精英家教网 > 初中数学 > 题目详情

【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将ADE沿AE对折至AFE,延长EF交边BC于点G,连接AGCF.则下列结论:①△ABG≌△AFG;②BG=CG;③AGCF;④SEGC=SAFE;⑤∠AGB+∠AED=145°.其中正确的个数是( )

A. 2 B. 3 C. 4 D. 5

【答案】C

【解析】试题分析:解:正确.

理由:

∵AB=AD=AFAG=AG∠B=∠AFG=90°

∴Rt△ABG≌Rt△AFGHL);

正确.

理由:

EF=DE=CD=2,设BG=FG=x,则CG=6﹣x

在直角△ECG中,根据勾股定理,得(6﹣x2+42=x+22

解得x=3

∴BG=3=6﹣3=GC

正确.

理由:

∵CG=BGBG=GF

∴CG=GF

∴△FGC是等腰三角形,∠GFC=∠GCF

∵Rt△ABG≌Rt△AFG

∴∠AGB=∠AGF∠AGB+∠AGF=2∠AGB=180°﹣∠FGC=∠GFC+∠GCF=2∠GFC=2∠GCF

∴∠AGB=∠AGF=∠GFC=∠GCF

∴AG∥CF

正确.

理由:

∵SGCE=GCCE=×3×4=6

∵SAFE=AFEF=×6×2=6

∴SEGC=SAFE

错误.

∵∠BAG=∠FAG∠DAE=∠FAE

∵∠BAD=90°

∴∠GAF=45°

∴∠AGB+∠AED=180°﹣∠GAF=135°

故选:C

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】阅读题:课本上有这样一道例题:解方程:

解:去分母得:

6(x+15)=15-10(x-7)

6x+90=15-10x+70

16x=-5

x=-

请回答下列问题:

(1)得到①式的依据是________;

(2)得到②式的依据是________;

(3)得到③式的依据是________;

(4)得到④式的依据是________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图ABCDDECE连接AE并延长交BC的延长线于点F.

(1)求证:△ADE≌△FCE

(2)AB2BCF36°求∠B的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A,B的坐标分别为A(0,a),B(b,a),且a、b满足(a﹣2)2+|b﹣4|=0,现同时将点A,B分别向下平移2个单位,再向左平移1个单位,分别得到点A,B的对应点C,D,连接AC,BD,AB.

(1)求点C,D的坐标及四边形ABDC的面积S四边形ABCD

(2)在y轴上是否存在一点M,连接MC,MD,使SMCD=S四边形ABDC?若存在这样一点,求出点M的坐标,若不存在,试说明理由;

(3)点P是直线BD上的一个动点,连接PA,PO,当点PBD上移动时(不与B,D重合),直接写出∠BAP、DOP、APO之间满足的数量关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形OABC的面积为9,点O为左边原点,点A轴上,点C轴上,点B在函数的图象上,点P是函数图象上的任意一点,过点P分别作轴、轴的垂线,垂足分别为EF,并设矩形OEPF和正方形OABC不重合的部分(图中阴影部分)的面积为S.

(1)求B点坐标和值;

(2)当时,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC为等腰直角三角形,∠BAC=90°,BC=2,E为AB上任意一动点,以CE为斜边作等腰Rt△CDE,连接AD,下列说法:①∠BCE=∠ACD;②AC⊥ED;③△AED∽△ECB;④AD∥BC;⑤四边形ABCD的面积有最大值,且最大值为 .其中,正确的结论是(
A.①②④
B.①③⑤
C.②③④
D.①④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知平行四边形ABCD中,CE平分∠BCD且交AD于点EA FCE,且交BC于点F

(1)求证:ABF≌△CDE

(2)如图,若∠1=65°,求∠B的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂现有甲种原料226 kg,乙种原料250 kg,计划利用这两种原料生产AB两种的产品共40件,生产AB两种产品用料情况如下表:

若设生产A产品件,求的值,并说明有哪几种符合题意的生产方案。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下图是某俱乐部篮球队队员年龄结构直方图,根据图中信息解答下列

问题:

1)该队队员年龄的平均数;

2)该队队员年龄的众数和中位数.

查看答案和解析>>

同步练习册答案