【题目】如图,正方形OABC的面积为9,点O为左边原点,点A在轴上,点C在轴上,点B在函数的图象上,点P是函数图象上的任意一点,过点P分别作轴、轴的垂线,垂足分别为E、F,并设矩形OEPF和正方形OABC不重合的部分(图中阴影部分)的面积为S.
(1)求B点坐标和值;
(2)当时,求P点坐标.
【答案】(1), ;(2)当时,P点坐标为或.
【解析】试题分析:(1)由正方形的面积,利用正方形的面积公式求出正方形的边长,确定出OA及AB的长,得到点B的坐标,将B的坐标代入反比例函数解析式中即可求出k值;
(2)分两种情况考虑:①当点P在点B的左边时,不重合部分为矩形PMCF,将P的坐标代入第一问确定出的反比例函数解析式中,得到mn的值,根据P及B的坐标,表示出PM与CM,利用矩形的面积公式表示出矩形PMCF的面积,将mn的值及已知的面积代入,即可求出m的值,进而得到n的值,确定出此时P的坐标;②当点P在点B的右边时,不重合部分为矩形ANPE,由P及B的坐标表示出AE及PE,利用矩形的面积公式表示出矩形ANPE的面积,将mn的值及已知的面积代入求出n的值,进而求出m的值,确定出此时P的坐标,综上,得到所有满足题意的P的坐标.
试题解析:解:(1)∵正方形OABC的面积为9,∴OA=OC=AB=BC=3,∴B(3,3).又∵点B(3,3)在函数(k>0,x>0)的图象上,∴将B的坐标代入反比例函数解析式得: =3,即k=9;
(2)分两种情况:
①当点P在点B的左侧时,矩形OEPF和正方形OABC不重合部分为矩形PFCM.∵P(m,n)在函数上,∴mn=9.∵PE=n,ME=BA=3,∴PM=PE﹣ME=n﹣3,又CM=OE=m,∴S=CMPM=m(n﹣3)=mn﹣3m=9﹣3m=,解得:m=1.5,可得n=6,∴点P的坐标为(1.5,6);
②当点P在点B的右侧时,矩形OEPF和正方形OABC不重合部分为矩形ANPE.∵P(m,n)在函数上,∴mn=9.∵OE=PF=m,NF=AO=3,AE=OE﹣OA=m﹣3,又PE=n,∴S=AEPE=n(m﹣3)=mn﹣3n=9﹣3n=,解得n=1.5,可得m=6,∴点P的坐标为(6,1.5).
综上所述:P的坐标为(1.5,6)或(6,1.5).
科目:初中数学 来源: 题型:
【题目】如图,已知顶点为(﹣3,﹣6)的抛物线y=ax2+bx+c经过点(﹣1,﹣4),则下列结论中错误的是( )
A.b2>4ac
B.ax2+bx+c≥﹣6
C.若点(﹣2,m),(﹣5,n)在抛物线上,则m>n
D.关于x的一元二次方程ax2+bx+c=﹣4的两根为﹣5和﹣1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若把边长为1的正方形ABCD的四个角(阴影部分)剪掉,得一四边形A1B1C1D1 . 试问怎样剪,才能使剩下的图形仍为正方形,且剩下图形的面积为原来正方形面积的 ,请说明理由.(写出证明及计算过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB,CD都垂直于x轴,垂足分别为B,D,若A(6,3),C(2,1), 则△OCD与四边形ABDC的面积比为( )
A.1:2
B.1:3
C.1:4
D.1:8
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=145°.其中正确的个数是( )
A. 2 B. 3 C. 4 D. 5
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点A的坐标是(﹣1,0),点B的坐标是(9,0),以AB为直径作⊙O′,交y轴的负半轴于点C,连接AC、BC,过A、B、C三点作抛物线.
(1)求点C的坐标及抛物线的解析式;
(2)点E是AC延长线上一点,∠BCE的平分线CD交⊙O′于点D,求点D的坐标;并直接写出直线BC、直线BD的解析式;
(3)在(2)的条件下,抛物线上是否存在点P,使得∠PDB=∠CBD,若存在,请求出点P的坐标,若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某体育用品店购进一批单件为40元的球服,如果按单价60元销售样,那么一个月内可售出240套,根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.
(1)求出y与x的函数关系式;
(2)当销售单件为多少元时,月销售额为14000元?
(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com