【题目】如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动,设点P运动的时间为t(s).
(1)对角线AC的长是 cm;
(2)当P异于A、C时,请说明PQ∥BC;
(3)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?
【答案】(1)2$\sqrt{3}$;(2)见解析;(3)当t=4﹣6或1<t≤3﹣或t=2时,⊙P与菱形ABCD的边BC有1个公共点;当4﹣6<t≤1时,⊙P与边BC有2个公共点
【解析】
(1)连接BD交AC于点O,由菱形的性质可知△AOB为直角三角形且∠OAB=30°,依据特殊锐角三角函数值可求得AO的长,从而得到AC的长;
(2)连接BD交AC于O,构建直角三角形AOB.利用菱形的对角线互相垂直、对角线平分对角、邻边相等的性质推知△PAQ∽△CAB;然后根据“相似三角形的对应角相等”证得∠APQ=∠ACB;最后根据平行线的判定定理“同位角相等,两直线平行”可以证得结论;
(3)如图2,⊙P与BC切于点M,连接PM,构建Rt△CPM,在Rt△CPM利用特殊角的三角函数值求得PM=PC=,然后根据PM=PQ=AQ=t列出关于t的方程,通过解方程即可求得t的值;
如图3,⊙P过点B,此时PQ=PB,根据等边三角形的判定可以推知△PQB为等边三角形,然后由等边三角形的性质以及(2)中求得t的值来确定此时t的取值范围;
如图4,⊙P过点C,此时PC=PQ,据此等量关系列出关于t的方程,通过解方程求得t的值.
(1)连接BD交AC于点O.
∵ABCD为菱形,∠DAB=60°,
∴∠OAB=30°,∠AOB=90°,AO=CO.
∴AO=AB×=2×=.
∴AC=2.
故答案为:2.
(2)∵四边形ABCD是菱形,且菱形ABCD的边长为2cm,
∴AB=BC=2,∠BAC=∠DAB,
又∵∠DAB=60°(已知),
∴∠BAC=∠BCA=30°;
如图1,连接BD交AC于O.
∵四边形ABCD是菱形,
∴AC⊥BD,OA=AC,
∴OB=AB=1(30°角所对的直角边是斜边的一半),
∴OA=(cm),AC=2OA=2(cm),
运动ts后,AP= t,AQ=t,
∴= =,
又∵∠PAQ=∠CAB,
∴△PAQ∽△CAB,
∴∠APQ=∠ACB(相似三角形的对应角相等),
∴PQ∥BC(同位角相等,两直线平行)
(2)如图2,⊙P与BC切于点M,连接PM,则PM⊥BC.
在Rt△CPM中,∵∠PCM=30°,∴PM=PC=,由PM=PQ=AQ=t,即=t
解得t=4﹣6,此时⊙P与边BC有一个公共点;
如图3,⊙P过点B,此时PQ=PB,
∵∠PQB=∠PAQ+∠APQ=60°
∴△PQB为等边三角形,∴QB=PQ=AQ=t,∴t=1
∴当4﹣6<t≤1时,⊙P与边BC有2个公共点.
如图4,⊙P过点C,此时PC=PQ,即2﹣t=t,∴t=3﹣.
∴当1<t≤3﹣时,⊙P与边BC有一个公共点,
当点P运动到点C,即t=2时P与C重合,Q与B重合,也只有一个交点,此时,⊙P与边BC有一个公共点,
∴当t=4﹣6或1<t≤3﹣或t=2时,⊙P与菱形ABCD的边BC有1个公共点;
当4﹣6<t≤1时,⊙P与边BC有2个公共点.
科目:初中数学 来源: 题型:
【题目】 随着新学校建成越来越多,绝大部分孩子已能就近入学,某数学学习兴趣小组对八年级(1)班学生上学的交通方式进行问卷调查,并将调查结果画出下列两个不完整的统计图(图1、图2).请根据图中的信息完成下列问题.
(1)该班参与本次问卷调查的学生共有多少人;
(2)请补全图1中的条形统计图;
(3)在图2的扇形统计图中,“骑车”所在扇形的圆心角的度数是多少度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知△ABC的一条边BC的长为5,另两边AB、AC的长是关于的一元二次方程的两个实数根。
(1)求证:无论为何值时,方程总有两个不相等的实数根。
(2)为何值时,△ABC是以BC为斜边的直角三角形。
(3)为何值时,△ABC是等腰三角形,并求△ABC的周长。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,弦CD⊥AB于H,G为⊙O上一点,连接AG交CD于K,在CD的延长线上取一点E,使EG=EK,EG的延长线交AB的延长线于F.
(1)求证:EF是⊙O的切线;
(2)连接DG,若AC∥EF时.
①求证:△KGD∽△KEG;
②若,AK=,求BF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知直线l经过A(6,0)和B(0,12)两点,且与直线y=x交于点C,点P(m,0)在x轴上运动.
(1)求直线l的解析式;
(2)过点P作l的平行线交直线y=x于点D,当m=3时,求△PCD的面积;
(3)是否存在点P,使得△PCA成为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c与x轴交于A,B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论:①b>0;②a﹣b+c<0;③阴影部分的面积为4;④若c=﹣1,则b2=4a.其中正确的个数为( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某厂家生产一种新型电子产品,制造时每件的成本为40元,通过试销发现,销售量万件与销售单价元之间符合一次函数关系,其图象如图所示.
求y与x的函数关系式;
物价部门规定:这种电子产品销售单价不得超过每件80元,那么,当销售单价x定为每件多少元时,厂家每月获得的利润最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com