精英家教网 > 初中数学 > 题目详情

【题目】如下图,将边长为 9cm 的正方形纸片 ABCD 折叠,使得点 A 落在边 CD 上的 E 点,折痕为 MN.若 CE 的长为 6cm,则 MN 的长为_____cm

【答案】3

【解析】

根据图形折叠前后图形不发生大小变化得出∠MWE=∠AWM=90°,进而得出∠DAE=∠DAE,再证明△NFM≌△ADE,然后利用勾股定理的知识求出MN的长.

解:作NF⊥AD,垂足为F,连接AE,NE,

∵将正方形纸片ABCD折叠,使得点A落在边CD上的E点,折痕为MN,
∴∠D=∠AHM=90°,∠DAE=∠DAE,
∴△AHM∽△ADE,
∴∠AMN=∠AED,
在△NFM和△ADE中

∴△NFM≌△ADE(AAS),
∴FM=DE=CD-CE=3cm,
又∵在Rt△MNF中,FN=9cm,
∴根据勾股定理得:MN==3(cm).
故答案为:3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在平面直角坐标系xOy中,直线AB与x轴交于点A(-2,0),与反比例函数在第一象限内的图象的交于点B(2,n),连结BO,若SAOB=4.

(1)求该反比例函数的解析式和直线AB的解析式;

(2)若直线AB与y轴的交点为C,求OCB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】反比例函数y=(1≤x≤8)的图象记为曲线C1C1沿y轴翻折,得到曲线C2直线y=-x+b C1 ,C2一共只有两个公共点,则b的取值范围是______________________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABCD中,∠ADC的平分线交直线BC于点E,交直线AB于点F

1)如图①,证明:BEBF

2)如图②,若∠ADC90°OAC的中点,GEF的中点,试探究OGAC的位置关系,并说明理由.

3)如图③,若∠ADC60°,过点EDC的平行线,并在其上取一点K(与点F位于直线BC的同侧),使EKBF,连接CKHCK的中点,试探究线段OHHA之间的数量关系,并对结论给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置的9个数(如6,7,8,13,14,15,20,21,22).若圈出的9个数中,最大数与最小数的和为42,则这9个数的和为(  )

A. 69 B. 84 C. 189 D. 207

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形 ABCD 中,EFGH 分别为各边的中点,顺次连 EFGH,把四边形 EFGH 称为中点四边形.连结 ACBD,容易证明:中点 四边形 EFGH 一定是平行四边形.

(1)如果改变原四边形 ABCD 的形状,那么中点四边形的形状也随之改变,通过探索 可以发现:当四边形 AB CD 的对角线满足 ACBD 时,四边形 EFGH 为菱形;当四边形ABCD 的对角线满足 时,四边形 EFGH 为矩形;当四边形 ABCD 的对角线满足 时,四边形 EFGH 为正方形.

(2)试证明:SAEHSCFG S ABCD

(3)利用(2)的结论计算:如果四边形 ABCD 的面积为 2012 那么中点四边形 EFGH 的面积是 (直接将结果填在 横线上)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知点C,D在线段AB上,M、N分别是AC、BD的中点,若AB=20,CD=4,

(1)求MN的长.

(2)若AB=a,CD=b,请用含有a、b的代数式表示出MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,AB=2∠DAB=60°,EAD边的中点,点MAB边上一动点(不与点A重合),延长ME交射线CD于点N,连接MDAN.

1)求证:四边形AMDN是平行四边形;

2)填空:AM的值为 时,四边形AMDN是矩形;AM的值为 时,四边形AMDN是菱形。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】直线y=﹣x+2x轴、y轴分别交于点A、点C,抛物线经过点A、点C,且与x轴的另一个交点为B(﹣1,0).

(1)求抛物线的解析式;

(2)点D为第一象限内抛物线上的一动点.

①如图1,若CD=AD,求点D的坐标;

②如图2,BDAC交于点E,求SCDE:SCBE的最大值.

查看答案和解析>>

同步练习册答案