【题目】如图,在△ABC中,∠BAC=120°,AB=AC=4,AD⊥BC,BD=2,延长AD到E,使AE=2AD,连接BE.
(1)求证:△ABE为等边三角形;
(2)将一块含60°角的直角三角板PMN如图放置,其中点P与点E重合,且∠NEM=60°,边NE与AB交于点G,边ME与AC交于点F.求证:BG=AF;
(3)在(2)的条件下,求四边形AGEF的面积.
【答案】(1)见解析;(2)见解析;(3)4
【解析】试题分析:(1)先证明,可知AB=2AD,因为AE=2AD,所以AB=AE,从而可知△ABE是等边三角形.
(2)由(1)可知: AE=BE,然后求证即可得出BG=AF;
(3)由于∴S四边形故只需求出△ABE的面积即可.
试题解析:
(1)AB=AC,AD⊥BC,
∴AB=2AD,
∵AE=2AD,
∴AB=AE,
∴△ABE是等边三角形.
(2)∵△ABE是等边三角形,
AE=BE,
由(1)
∴∠ABE=∠CAE,
∴∠NEM∠AEN=∠BEA∠AEN,
∴∠AEF=∠BEG,
在△BEG与△AEF中,
∴BG=AF;
(3)由(2)可知:
∴S四边形
∵△ABE是等边三角形,
∴AE=AB=4,
∴S四边形
科目:初中数学 来源: 题型:
【题目】(1)尺规作图:如图1,在四边形ABCD内找一点P,使得点P到AB、BC的距离相等,并且点P到点A、D的距离也相等.(不写作法,保留作图痕迹).
(2)如图2,在长度为1个单位长度的小正方形组成的正方形网格中,点A、B、C在小正方形的顶点上,①△ABC的面积为______.
②在图中画出与△ABC关于直线l成轴对称的△A1B1C1.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC的中点,DE⊥AB于E,DF⊥AC于F,BE=CF.
(1)求证:AD平分∠BAC;
(2)连接EF,求证:AD垂直平分EF.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ACD和△BCE都是等腰直角三角形,∠ACD=∠BCE=90°,
(1)请判断线段AE和BD的数量关系和位置关系,并证明;
(2)若已知∠AED=135°,设∠AEC=α,当△BDE为等腰三角形时,求α的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,BA=BC,∠ABC=40°,∠ABC的平分线与BC的垂直平分线交于点O,E在BC边上,F在AC边上,将∠A沿直线EF翻折,使点A与点O恰好重合,则∠OEF的度数是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,其中1是第一个三角形数,3是第2个三角形数,6是第3个三角形数,…依此类推,那么第9个三角形数是 , 2016是第 个三角形数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com