精英家教网 > 初中数学 > 题目详情
10.如图,点P是△ABC的外角∠DAC平分线上的一点,你能比较PB+PC与AB+AC的大小吗?说说你的理由.

分析 在BD上取一点E,使AE=AC,就可以得出△ACP≌△AEP,从而将四条不同的线段转化到一个三角形中进行求解,即可得出结论.

解答 解:PB+PC>AB+AC(2分)
如图,在BD上取一点E,使AE=AC,连接EP.
∵AP是∠BAC的外角平分线,
∴∠CAP=∠EAP,
在△ACP和△AEP中,
$\left\{\begin{array}{l}{AC=AE}\\{∠CAP=∠EAP}\\{AP=AP}\end{array}\right.$,
∴△ACP≌△AEP(SAS),
∴PC=PE.
∵PB+PE>BE,
∴PB+PE>AB+AE,
∴PB+PE>AB+AC,
∴PB+PC>AB+AC.

点评 本题考查了角平分线的性质的运用,全等三角形的判定及性质的运用,三角形三边关系的运用,解答时证明三角形全等是关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

20.为缓解甲、乙两地旱情,某水库计划向甲、乙两地送水,甲地需水量为180万立方米,乙地需电水量为120万立方米,现已两次送水:往甲地送水3天,乙地送水2天,共送水84万立方米;往甲地送水2天,乙地送水3天,共送水81万立方米,则完成往甲地,乙地送水任务还各需(  )天.
A.甲需4天,乙需2天B.甲需3天,乙需1天C.甲需6天,乙需4天D.甲需5天,乙需3天

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.网购成为时下最热的购物方式,同时也带动了快递业的发展.某快递公司更新了包裹分拣设备后,平均每人每天比原先要多分拣50件包裹,现在分拣600件包裹所需的时间与原来分拣450件包裹所需时间相同,现在平均每人每天分拣多少件包裹?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

18.如图,已知ABCD为正方形,△AEP为等腰直角三角形,∠EAP=90°,EA=AP=1,且D、P、E三点共线,若PB=$\sqrt{5}$,则PC=$\sqrt{3}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知,∠BAC=∠DAE,∠1=∠2,且AB=AC,求证:BD=CE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.已知,如图△ABC中,BD⊥AC,CE⊥AB,BD、CE交于O点,且∠ABC=∠ACB,试说明OB=OC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,⊙O′与x轴交于A,B两点,A($\sqrt{3}+1$,0),O′($\sqrt{3}$,1),过O点作⊙O′的切线,切点为C点,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

19.如图,抛物线y=ax2+bx+c(a>0)的图象与x轴交于A(一4,0)、B(2,0),与y轴交于点C.经过点A的直线y=$\frac{1}{2}$x+2与抛物线的另一个交点为D,点P是抛物线上的一个动点.
(1)b=2a,C=-8a(用含a的代数式表示);
(2)若点D的横坐标为5,求抛物线的解析式;
(3)在(2)的条件下,在直线AD下方的抛物线上求点P,使△APD的面积等于$\frac{21}{2}$;
(4)若在第二象限内的抛物线上存在动点P,使得以A、B、P为顶点的三角形与△ABC相似,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.若二次函数y=ax2+bx+c(a<0)的图象经过点(2,0),且其对称轴为x=-1,则使函数值y>0成立的x的取值范围是(  )
A.x<-4或x>2B.-4≤x≤2C.x≤-4或x≥2D.-4<x<2

查看答案和解析>>

同步练习册答案