【题目】如图,△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,交AC于点E,过点D作DF⊥AC于点F,交AB的延长线于点G.
(1)求证:DF是⊙O的切线;
(2)已知BD=2,CF=2,求AE和BG的长.
【答案】(1)见解析;(2)AE=6,BG=
【解析】
(1)连接OD,AD,由圆周角定理可得AD⊥BC,结合等腰三角形的性质知BD=CD,再根据OA=OB知OD∥AC,从而由DG⊥AC可得OD⊥FG,即可得证;
(2)连接BE.BE∥GF,推出△AEB∽△AFG,可得= ,由此构建方程即可解决问题;
(1)证明:如图,连接OD,AD.
∵AB为⊙O的直径,
∴∠ADB=90°,即AD⊥BC.
∵AB=AC,
∴BD=CD.
又∵OA=OB,
∴OD∥AC.
∵DF⊥AC,
∴OD⊥DF,
∴直线DF与⊙O相切.
(2)解:如图,连接BE.
∵BD=2,
∴CD=BD=2.
∵CF=2,
∴DF=,
∴BE=2DF=8.
∵cos∠C=cos∠ABC,
∴,
∴=,
∴AB=10,
∴AE==6.
∵BE⊥AC,DF⊥AC,
∴BE∥GF,
∴△AEB∽△AFG,
∴=,
∴= ,
∴BG= .
科目:初中数学 来源: 题型:
【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2, 求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于A (-1,0),B (5,0)两点,直线与y轴交于点,与轴交于点.点是x轴上方的抛物线上一动点,过点作⊥轴于点,交直线于点.设点的横坐标为.
(1)求抛物线的解析式;
(2)若,求的值;
(3)若点是点关于直线的对称点,是否存在点,使点落在轴上?若存在,请直接写出相应的点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在距离铁轨200 m的B处,观察从甲地开往乙地的“和谐号”动车,当动车车头在A处时,恰好位于B处的北偏东60°方向上.10 s后,动车车头到达C处,恰好位于B处的西北方向上,则这列动车的平均车速是________ m/s(结果保留根号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形纸片ABCD中,AB=3cm,AD=5cm,折叠纸片使B点落在边AD上的E处,折痕为PQ,过点E作EF∥AB交PQ于F,连接BF.
(1)求证:四边形BFEP为菱形;
(2)当点E在AD边上移动时,折痕的端点P、Q也随之移动;
①当点Q与点C重合时(如图2),求菱形BFEP的边长;
②若限定P、Q分别在边BA、BC上移动,求出点E在边AD上移动的最大距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c(a≠0)的图象如图,则下列四个结论:①abc>0;②b2﹣4ac>0;③a+b+c<0;④b>2a.其中正确的个数是( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,已知点C(1,0),直线与两坐标轴分别交于A,B两点,D,E分别是线段AB,OA上的动点,则△CDE的周长的最小值是( )
A.B.10
C.D.12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一船在某灯墙C正东方向10海里处的A点,以25海里/时的速度沿北偏西30°方向航行.
(1)问多长时间后,船距灯塔最近?
(2)求船到达灯塔的正北方向时航行了多少海里?此时,距离灯塔有多远?(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)已知:如图,是的内接正三角形,点为弧上一动点,求证:;
(2)如图,四边形是的内接正方形,点为弧上一动点,求证:;
(3)如图,六边形是的内接正六边形,点为弧上一动点,请探究三者之间有何数量关系,并给予证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com