分析 (1)根据点P、Q的运动速度求出AP,再求出BP和BQ,用勾股定理求得PQ即可;
(2)由题意得出BQ=BP,即2t=8-t,解方程即可;
(3)当点Q在边CA上运动时,能使△BCQ成为等腰三角形的运动时间有三种情况:
①当CQ=BQ时(图1),则∠C=∠CBQ,可证明∠A=∠ABQ,则BQ=AQ,则CQ=AQ,从而求得t;
②当CQ=BC时(图2),则BC+CQ=12,易求得t;
③当BC=BQ时(图3),过B点作BE⊥AC于点E,则求出BE,CE,即可得出t.
解答 (1)解:(1)BQ=2×2=4cm,
BP=AB-AP=8-2×1=6cm,
∵∠B=90°,
PQ=$\sqrt{B{Q}^{2}+B{P}^{2}}$=$\sqrt{{4}^{2}+{6}^{2}}$=2$\sqrt{13}$(cm);
(2)解:根据题意得:BQ=BP,
即2t=8-t,
解得:t=$\frac{8}{3}$;
即出发时间为$\frac{8}{3}$秒时,△PQB是等腰三角形;
(3)解:分三种情况:
①当CQ=BQ时,如图1所示:![]()
则∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°,
∠A+∠C=90°,
∴∠A=∠ABQ
∴BQ=AQ,
∴CQ=AQ=5![]()
∴BC+CQ=11,
∴t=11÷2=5.5秒.
②当CQ=BC时,如图2所示:
则BC+CQ=12
∴t=12÷2=6秒.
③当BC=BQ时,如图3所示:![]()
过B点作BE⊥AC于点E,
则BE=$\frac{AB•BC}{AC}$=$\frac{6×8}{10}$=4.8(cm)
∴CE=$\sqrt{B{C}^{2}-B{E}^{2}}$=3.6cm,
∴CQ=2CE=7.2cm,
∴BC+CQ=13.2cm,
∴t=13.2÷2=6.6秒.
由上可知,当t为5.5秒或6秒或6.6秒时,
△BCQ为等腰三角形.
点评 本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com