精英家教网 > 初中数学 > 题目详情

【题目】如图,二次函数的图象与轴相交于点,与轴相交于点

求该函数的表达式;

为该函数在第一象限内的图象上一点,过点,垂足为点,连接

求线段的最大值;

若以点为顶点的三角形与相似,求点的坐标.

【答案】 满足条件的点坐标为

【解析】

(1)根据待定系数法求函数关系式;(2)根据相似三角形列出比例式表示PQ.

抛物线解析式为

,解得

所以抛物线解析式为

①作轴于,交,如图,

时,,则

设直线的解析式为

,解得

∴直线的解析式为

,则

,即

∴当时,线段的最大值为

②当时,

此时,点和点关于直线对称,

∴此时点坐标为

时,

为等腰三角形,

解得

此时点坐标为

综上所述,满足条件的点坐标为

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,小华剪了两条宽为1的纸条,交叉叠放在一起,且它们较小的交角为60°,则它们重叠部分的面积为(  )

A. 3 B. 2 C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.在建立平面直角坐标系后,点B的坐标为(﹣1,2).

(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1

(2)画出与△A1B1C1关于y轴对称的△A2B2C2

(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为   

(4)试在y轴上找一点Q(在图中标出来),使得点Q到B2、C2两点的距离之和最小,并求出QB2+QC2的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在长度为1个单位长度的小正方形组成的长方形中,点ABC在小正方形的顶点上.

1)在图中画出与△ABC关于直线l成轴对称的△ABC′;

2)计算△ABC的面积;

3)在直线l上找一点P,使PB+PC的长最短.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,三孔桥横截面的三个孔都呈抛物线形,左右两个抛物线形是全等的.正常水位时,大孔水面宽度为,顶点距水面,小孔顶点距水面.当水位上涨刚好淹没小孔时,大孔的水面宽度为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知O为坐标原点,四边形OABC为长方形,A(10,0),C(0,4),点D是OA的中点,点P在BC上运动.

(1)当△ODP是等腰三角形时,请直接写出点P的坐标;

(2)求△ODP周长的最小值.(要有适当的图形和说明过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,CE⊥AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF交CE于点G.

(1)若∠D=60°,CF=2,求CG的长度;

(2)求证:AB=ED+CG.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABACDE是边AB的垂直平分线,交ABE、交ACD,连接BD.

(1)若∠A40°,求∠DBC的度数.

(2)若△BCD的周长为16cm,△ABC的周长为26cm,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】本题满分8如图,在ABC中,AB=ACDACABC的一个外角

实践与操作:

根据要求尺规作图,并在图中标明相应字母保留作图痕迹,不写作法

1DAC的平分线AM

2作线段AC的垂直平分线,与AM交于点F,与BC边交于点E,连接AECF

猜想并证明:

判断四边形AECF的形状并加以证明

查看答案和解析>>

同步练习册答案