精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB6AD8,以BC为斜边在矩形的外部作直角三角形BEC,点FCD的中点,则EF的最大值为(  )

A. 8B. 9C. 10D. 2

【答案】B

【解析】

BC中点O,连接OEOF,根据矩形的性质可求OCCF的长,根据勾股定理可求OF的长,根据直角三角形的性质可求OE的长,根据三角形三边关系可求得当点O,点E,点F共线时,EF有最大值,即EF=OE+OF

解:如图,取BC中点O,连接OEOF

∵四边形ABCD是矩形,

AB=CD=6AD=BC=8,∠C=90°,

∵点FCD中点,点OBC的中点,

CF=3CO=4

OF==5

∵点ORtBCE的斜边BC的中点,

OE=OC=4

∵根据三角形三边关系可得:OE+OFEF

∴当点O,点E,点F共线时,EF最大值为OE+OF=4+5=9

故选:B

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程

1)若此方程的一个根为1,求的值;

2)求证:不论取何实数,此方程都有两个不相等的实数根.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在学习了一次函数图像后,张明、李丽和王林三位同学在赵老师的指导下,对一次函数进行了探究学习,请根据他们的对话解答问题.

(1)张明:,我能求出直线与轴的交点坐标为 ;

李丽:,我能求出直线与坐标轴围成的三角形的面积为 ;

(2)王林:根据你们的探究,我发现无论取何值,直线总是经过一个固定的点,请求出这个定点的坐标.

(3)赵老师:我来考考你们,如果点的坐标为,该点到直线的距离存在最大值吗?若存在,试求出该最大值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线:y=ax2+bx+c(a<0)经过A(2,4)、B(﹣1,1)两点,顶点坐标为(h,k),则下列正确结论的序号是(  )

①b>1;②c>2;③h>;④k≤1.

A. ①②③④ B. ①②③ C. ①②④ D. ②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线形拱桥,当拱顶离水面2m时,水面宽4m,则水面下降1m时,水面宽度增加_____m.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知四边形ABCD是矩形,延长AB至点F,连结CF,使得CF=AF,过点AAEFC于点E.

1)求证:AD=AE.

2)连结CA,若∠DCA=70°,求∠CAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙两渔船同时从港口O出发外出捕鱼,乙沿南偏东30°方向以每小时10海里的速度航行,甲沿南偏西75°方向以每小时10海里的速度航行,当航行1小时后,甲在A处发现自己的渔具掉在乙船上,于是迅速改变航向和速度,仍以匀速沿南偏东60°方向追赶乙船,正好在B处追上.则甲船追赶乙船的速度为________海里/小时?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在由6个大小相同的小正方形组成的方格中,设每个小正方形的边长均为1.

1)如图①,是三个格点(即小正方形的顶点),判断的位置关系,并说明理由;

2)如图②,连接三格和两格的对角线,求的度数(要求:画出示意图,并写出证明过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有( ) 个

A. 1 B. 2 C. 3 D.4

查看答案和解析>>

同步练习册答案