精英家教网 > 初中数学 > 题目详情

【题目】如图,在由6个大小相同的小正方形组成的方格中,设每个小正方形的边长均为1.

1)如图①,是三个格点(即小正方形的顶点),判断的位置关系,并说明理由;

2)如图②,连接三格和两格的对角线,求的度数(要求:画出示意图,并写出证明过程).

【答案】1,理由见解析;(2,理由见解析.

【解析】

1)连接AC,再利用勾股定理列式求出AB2BC2AC2,然后利用勾股定理逆定理解答;

2)根据勾股定理的逆定理判定△ABC是等腰直角三角形,根据全等三角形的判定和性质,可得结果.

解:(1

理由:如图,连接

由勾股定理可得

所以

所以是直角三角形且

所以

2.

理由:如图,连接AB BC

由勾股定理得

所以

所以是直角三角形且.

又因为,所以是等腰直角三角形,

∴∠CAB45°,

在△ABE和△FCD中,

∴△ABE≌△FCDSAS),

∴∠BAD=∠β,

∴∠α+∠β=∠CAD+BAD=45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=a(x2﹣4mx﹣12m2)(其中a、m是常数,且a>0,m>0)的图象与x轴分别交于点A、B(点A位于点B的左侧),与y轴交于C(0,﹣6),点D在二次函数的图象上,CD∥AB,连接AD,过点A作射线AE交二次函数的图象于点E,AB平分∠DAE.

(1)用含m的代数式表示a;

(2)求证:为定值;

(3)设该二次函数图象的顶点为F,连接FC并延长交x轴的负半轴于点G,判断以线段GF、AD、AE的长度为三边长的三角形的面积是否能为24(+1)m2﹣48m﹣72+24,能则求出m;不能则说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB6AD8,以BC为斜边在矩形的外部作直角三角形BEC,点FCD的中点,则EF的最大值为(  )

A. 8B. 9C. 10D. 2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】北京市在城市建设中,要折除旧烟囱,在烟囱正西方向的楼的顶端,测得烟囱的顶端的仰角为,底端的俯角为,已量得.拆除时若让烟囱向正东倒下,试问:距离烟囱东方远的一棵大树是否被歪倒的烟囱砸着?请说明理由.

(参考数据:

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,防洪大堤的横断面是梯形ABCD,其中AD//BC,坡长AB=10cm,坡角,汛期来临前对其进行了加固,改造后的背水面坡角(注:请在结果中保留根号)

1)试求出防洪大堤的横断面的高度;

2)请求出改造后的坡长AE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】探究与发现:如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这样图形叫做规形图

1)观察规形图,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;

2)请你直接利用以上结论,解决以下三个问题:

①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XYXZ恰好经过点BC,∠A=40°,则∠ABX+ACX等于多少度;

②如图3DC平分∠ADBEC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;

③如图4,∠ABD,∠ACD10等分线相交于点G1G2G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的边长为10,点E、F分别在边BC、CD上,且∠EAF=45°,AHEF于点H,AH=10,连接BD,分别交AE、AH、AF于点P、G、Q.

(1)求CEF的周长;

(2)若EBC的中点,求证:CF=2DF;

(3)连接QE,求证:AQ=EQ.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=5,AB=8,点E为射线DC上一个动点,把ADE沿直线AE折叠,当点D的对应点F刚好落在线段AB的垂直平分线上时,则DE的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB=12,点CDAB上,且AC=DB=2,点P从点C沿线段CD向点D运动(运动到点D停止),以APBP为斜边在AB的同侧画等腰Rt△APE和等腰Rt△PBF,连接EF,取EF的中点G,下列说法中正确的有( )

①△EFP的外接圆的圆心为点G

四边形AEFB的面积不变;

③EF的中点G移动的路径长为4

A. 0B. 1C. 2D. 3

查看答案和解析>>

同步练习册答案