精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线yax21a0)与直线ykx+3交于MN两点,在y轴负半轴上存在一定点P,使得不论k取何值,直线PMPN总是关于y轴对称,则点P的坐标是_____

【答案】(0,-5)

【解析】

根据题意设MxMkxM+3),NxNkxN+3),P0t),然后根据抛物线与直线的交点得出一元二次方程,然后由根与系数的关系求得xM+xNxM×xN=﹣,再由相似三角形的判定和性质求得t,继而求得点P的坐标.

如图作MBy轴,NAy

MN是直线ykx+3的点

∴设MxMkxM+3),NxNkxN+3),P0t

∵抛物线yax21a0)与直线ykx+3交于MN两点

ax21kx+3

ax2kx40

xM+xNxM×xN=﹣

∵直线PMPN总是关于y轴对称

∴∠MPA=∠NPA,且∠MBP=∠NAP90°

∴△MBPNAP

∴(﹣xMxN)(3t)=2kxMxN

∴﹣3t)=2k×(-),

t=﹣5

P0,﹣5).

故答案为(0,﹣5

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.

(1)求证:AB=AF;

(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC中,下面说法正确的个数是(  )个.

①若OABC的外心,∠A50°,则∠BOC100°

②若OABC的内心,∠A50°,则∠BOC115°

③若BC6AB+AC10,则ABC的面积的最大值是12

ABC的面积是12,周长是16,则其内切圆的半径是1

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,∠BAC=90°,过点B的直线MNAC,DBC边上一点,连接AD,作DEADMN于点E,连接AE.

(1)如图①,当∠ABC=45°时,求证:AD=DE;理由;

(2)如图②,当∠ABC=30°时,线段ADDE有何数量关系?并请说明理由;

(3)当∠ABC=α时,请直接写出线段ADDE的数量关系.(用含α的三角函数表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在等边△ABC中

(1)如图1,P,Q是BC边上的两点,AP=AQ,∠BAP=20°,求∠AQB的度数;

(2)点P,Q是BC边上的两个动点(不与点B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.

①依题意将图2补全;

②小茹通过观察、实验提出猜想:在点P,Q运动的过程中,始终有PA=PM,小茹把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:

想法1:要证明PA=PM,只需证△APM是等边三角形;

想法2:在BA上取一点N,使得BN=BP,要证明PA=PM,只需证△ANP≌△PCM;

想法3:将线段BP绕点B顺时针旋转60°,得到线段BK,要证PA=PM,只需证PA=CK,PM=CK…

请你参考上面的想法,帮助小茹证明PA=PM(一种方法即可).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】抛物线y=﹣x2+bx+c经过点A、B、C,已知A(﹣1,0),C(0,3).

(1)求抛物线的解析式;

(2)如图1,P为线段BC上一点,过点Py轴平行线,交抛物线于点D,当△BDC的面积最大时,求点P的坐标;

(3)如图2,抛物线顶点为E,EF⊥x轴于F点,M(m,0)是x轴上一动点,N是线段EF上一点,若∠MNC=90°,请指出实数m的变化范围,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某天然气公司的主输气管道从A市的北偏东60°方向直线延伸,测绘员在A处测得要安装天然气的M小区在A市的北偏东30°方向,测绘员沿主输气管道步行1000米到达C处,测得小区M位于点C的北偏西75°方向,试在主输气管道AC上寻找支管道连接点N,使其到该小区铺设的管道最短,并求AN的长.(精确到1米,≈1.414,≈1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在直角坐标系中,矩形OABC的顶点Cx轴的负半轴上,点Ay轴正半轴上,矩形OABC的面积为8.把矩形OABC沿DE翻折,使点B与点O重合,点C落在第三象限的G点处,作EHx轴于H,过E点的反比例函数y图象恰好过DE的中点F.则k_____,线段EH的长为:_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知抛物线yax2a0)与一次函数ykx+b的图象相交于A(﹣1,﹣1),B2,﹣4)两点,点P是抛物线上不与AB重合的一个动点,点Qy轴上的一个动点.

1)请直接写出akb的值及关于x的不等式ax2kx2的解集;

2)当点P在直线AB上方时,请求出△PAB面积的最大值并求出此时点P的坐标;

3)是否存在以PQAB为顶点的四边形是平行四边形?若存在,请直接写出PQ的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案