【题目】写出命题“等腰三角形底边上的角平分线与中线互相重合”的逆命题,并用推理的方法证明你所写的这个逆命题是真命题.
逆命题:___________________;
已知:____________________;
求证:___________________.
证明:
【答案】如果一个三角形一边上的高线和中线互相重合,那么这个三角形是等腰三角形.
【解析】
根据逆命题的概念写出逆命题;写出已知,求证,证明△ADB≌△ADC,根据全等三角形的性质证明结论.
定理“等腰三角形底边上的角平分线与中线互相重合”的逆命题为:如果一个三角形一边上的高线和中线互相重合,那么这个三角形是等腰三角形;
已知:如图,△ABC中,AD⊥BC,BD=DC,
求证:△ABC是等腰三角形
证明:∵AD⊥BC,
∴∠ADB=∠ADC=90°,
在△ADB和△ADC中,
,
∴△ADB≌△ADC(SAS).
∴AB=AC,即△ABC是等腰三角形;
故答案为:如果一个三角形一边上的高线和中线互相重合,那么这个三角形是等腰三角形.
科目:初中数学 来源: 题型:
【题目】小明参加某个智力竞答节目,答对最后两道单选题就顺利通关.第一道单选题有3个选项,第二道单选题有4个选项,这两道题小明都不会,不过小明还有一个“求助”没有用(使用“求助”可以让主持人去掉其中一题的一个错误选项).
(1)如果小明第一题不使用“求助”,那么小明答对第一道题的概率是 .
(2)如果小明将“求助”留在第二题使用,请用树状图或者列表来分析小明顺利通关的概率.
(3)从概率的角度分析,你建议小明在第几题使用“求助”.(直接写出答案)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长方形ABCD中,AB=8,BC=12,点E是边BC上一点,BE=5,点F是射线BA上一动点,连接EF,将△BEF沿着EF折叠,使B点的对应点P落在长方形一边的垂直平分线上,连接BP,则BP的长是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线L:y=﹣x2+bx+c经过点A(0,1),与它的对称轴直线x=1交于点B.
(1)直接写出抛物线L的解析式;
(2)如图1,过定点的直线y=kx﹣k+4(k<0)与抛物线L交于点M、N.若△BMN的面积等于1,求k的值;
(3)如图2,将抛物线L向上平移m(m>0)个单位长度得到抛物线L1,抛物线L1与y轴交于点C,过点C作y轴的垂线交抛物线L1于另一点D.F为抛物线L1的对称轴与x轴的交点,P为线段OC上一点.若△PCD与△POF相似,并且符合条件的点P恰有2个,求m的值及相应点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司投入研发费用80万元万元只计入第一年成本,成功研发出一种产品公司按订单生产产量销售量,第一年该产品正式投产后,生产成本为6元件此产品年销售量万件与售价元件之间满足函数关系式.
求这种产品第一年的利润万元与售价元件满足的函数关系式;
该产品第一年的利润为20万元,那么该产品第一年的售价是多少?
第二年,该公司将第一年的利润20万元万元只计入第二年成本再次投入研发,使产品的生产成本降为5元件为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件请计算该公司第二年的利润至少为多少万元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.
(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;
(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等腰直角△ABC中,∠A=90°,AB=AC,D为边BC中点,DE⊥DF,若四边形AEDF的面积是4,则等腰直角△ABC的面积为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y= (x>0)的图象经过矩形OABC对角线的交点M,分别与AB、BC相交于点D、E.若四边形ODBE的面积为6,则k的值为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com