精英家教网 > 初中数学 > 题目详情

【题目】如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,3.

(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为________;

(2)小明先转动转盘一次,当转盘停止转动时,记录下指针所指扇形中的数字;接着再转动转盘一次,当转盘停止转动时,再次记录下指针所指扇形中的数字,求这两个数字之和是3的倍数的概率(用画树状图或列表等方法求解)

【答案】(1);(2)这两个数字之和是3的倍数的概率为

【解析】

(1)在标有数字1、2、33个转盘中,奇数的有1、32个,根据概率公式可得;(2)用列表法列出所有情况,再计算概率.

解:(1)∵在标有数字1、2、33个转盘中,奇数的有1、32个,

∴指针所指扇形中的数字是奇数的概率为

故答案为:

(2)列表如下:

1

2

3

1

(1,1)

(2,1)

(3,1)

2

(1,2)

(2,2)

(3,2)

3

(1,3)

(2,3)

(3,3)

由表可知,所有等可能的情况数为9种,其中这两个数字之和是3的倍数的有3种,

所以这两个数字之和是3的倍数的概率为=

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的顶点A(1,1),B(3,1),规定把△ABC“先沿x轴翻折,再向左平移1个单位为一次变换.如图这样的等边△ABC连续经过2018次变换后,顶点C的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有一块边长为的等边三角形纸板,如图1,经过底边的中点剪去第一个正三角形;如图2,过剩余底边的中点再剪去第二个正三角形,然后依次过剩余底边的中点再剪去更小的第三个第四···正三角形,则剪掉的第个正三角形的面积是(

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线y=3ax2+2bx+c(a≠0)。

(1)若a=b=1,C=-1。求此抛物线与x轴的交点的坐标;

(2)若a=,c=b+2,其中b是整数。

①直接写出抛物线的顶点坐标(用含有b的代数式表示),并写出顶点纵坐标的最大值;

②若抛物线在-2≤x≤2时,抛物线的最小值是-3,求b的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】李大妈加盟了红红全国烧烤连锁店,该公司的宗旨是薄利多销,经市场调查发现,当羊肉串的单价定为元时,每天能卖出串,在此基础上,每加价元李大妈每天就会少卖出串,考虑了所有因素后李大妈的每串羊肉串的成本价为元,若李大妈每天销售这种羊肉串想获得利润是元,那么请问这种羊肉串应怎样定价?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在等边△ABC中,DBC边上一点,EAC边上一点,且∠ADE=60°.

(1)求证:△ABD∽△DCE

(2)若BD=3,CE=2,求△ABC的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在一块长16m,宽12m的矩形荒地上,要建造一个花园,要求花园面积是荒地面积的一半,如图所示分别是小华与小芳的设计方案.同学们都认为小华的方案是正确的,但对小芳方案是否符合条件有不同意见,你认为小芳的方案符合条件吗?若不符合,请你依照小芳的方案设计小路的宽度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在直角三角形ABC中,∠BAC=90°,(AC>AB),在边AC上取一点D,使得BD=CD,点E、F分别是线段BC、BD的中点,连接AFEF,作∠FEM=FDC,交AC于点M,如图1所示.

(1)请判断四边形EFDM是什么特殊的四边形,并证明你的结论;

(2)将∠FEM绕点E顺时针旋转到∠GEN,交线段AF于点G,交AC于点N,如图2所示,请证明:EG=EN;

(3)在第(2)条件下,若点GAF中点,且∠C=30°,AB=3,如图3,求GE的长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,ADBE相交于点M,连接CM
求证:
的度数用含的式子表示
如图2,当时,点PQ分别为ADBE的中点,分别连接CPCQPQ,判断的形状,并加以证明.

查看答案和解析>>

同步练习册答案