分析 根据题目提供的数据求出扇形的弧长,根据扇形的弧长等于圆锥地面的周长求出圆锥的半径,然后在圆锥的高、母线和底面半径构造的直角三角形中求圆锥的高.
解答 解:扇形的弧长为:$\frac{60π×30}{180}$=10π,
∵扇形的弧长等于圆锥的底面周长,
∴2πr=10π,
解得:r=5,
∴圆锥的高为:$\sqrt{3{0}^{2}-{5}^{2}}$=5$\sqrt{35}$cm.
故答案为:5$\sqrt{35}$cm.
点评 本题考查了圆锥的侧面展开图的弧长与圆锥的底面半径之间的转化,解决本题的关键是根据圆锥的侧面弧长转化为圆锥的底面周长,求出半径后,构造直角三角形求圆锥的高.
科目:初中数学 来源: 题型:选择题
| A. | 一直增大 | B. | 一直减小 | C. | 先增大后减小 | D. | 先减小后增大 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{17}{38}$ | C. | $\frac{2}{5}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y=-$\frac{1}{2}$x+2 | B. | y=$\frac{1}{2}$x+2 | C. | y=$\frac{\sqrt{3}}{3}$x-$\frac{4\sqrt{3}}{3}$ | D. | y=-$\frac{\sqrt{3}}{3}$x+$\frac{4\sqrt{3}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com