精英家教网 > 初中数学 > 题目详情

【题目】如图,直线yx+2y轴交于点A,与直线y=﹣x交于点B,以AB为边向右作菱形ABCD,点C恰与原点O重合,抛物线y=(xh2+k的顶点在直线y=﹣x上移动.若抛物线与菱形的边ABBC都有公共点,则h的取值范围是(  )

A.2B.2≤h≤1C.1D.1

【答案】A

【解析】

y=x+2y=-x联立可求得点B的坐标,然后由抛物线的顶点在直线y=-x可求得k=-h,于是可得到抛物线的解析式为y=x-h2-h,由图形可知当抛物线经过点B和点C时抛物线与菱形的边ABBC均有交点,然后将点C和点B的坐标代入抛物线的解析式可求得h的值,从而可判断出h的取值范围.

解:∵将yx+2y=﹣x联立得:,解得:

∴点B的坐标为(﹣21).

由抛物线的解析式可知抛物线的顶点坐标为(hk).

∵将xhyk,代入得y=﹣x得:﹣hk,解得k=﹣h

∴抛物线的解析式为y=(xh2h

如图1所示:当抛物线经过点C时.

C00)代入y=(xh2h得:h2h0,解得:h10(舍去),h2

如图2所示:当抛物线经过点B时.

B(﹣21)代入y=(xh2h得:(﹣2h2h1,整理得:2h2+7h+60,解得:h1=﹣2h2=﹣(舍去).

综上所述,h的范围是﹣2≤h≤

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,二次函数yax1)(x5)(a0)的图象与x轴交于AB两点(点A在点B的左侧),与y轴交于P点,过其顶点C作直线CHx轴于点H

1)若∠APB30°,请直接写出满足条件的点P的坐标;

2)当∠APB最大时,请求出a的值;

3)点POCB能否在同一个圆上?若能,请求出a的值,若不能,请说明理由.

4)若a ,在对称轴HC上是否存在一点Q,使∠AQP=∠ABP?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校八年级一班20名女生某次体育测试的成绩统计如下:

成绩(分)

60

70

80

90

100

人数(人)

1

5

x

y

2

(1)如果这20名女生体育成绩的平均分数是82分,求xy的值;

(2)(1)的条件下,设20名学生测试成绩的众数是a,中位数是b的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCDDEFG都是正方形,边长分别为mnmn).坐标原点OAD的中点,ADEy轴上.若二次函数yax2的图象过CF两点,则_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了解某校九年级学生立定跳远水平,随机抽取该年级50名学生进行测试,并把测试成绩(单位:m)绘制成不完整的频数分布表和频数分布直方图.

学生立定跳远测试成绩的频数分布表

分组

频数

1.2≤x<1.6

a

1.6≤x<2.0

12

2.0≤x<2.4

b

2.4≤x<2.8

10

请根据图表中所提供的信息,完成下列问题:

(1)表中a=   ,b=   ,样本成绩的中位数落在   范围内;

(2)请把频数分布直方图补充完整;

(3)该校九年级共有1000名学生,估计该年级学生立定跳远成绩在2.4≤x<2.8范围内的学生有多少人?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】自2016年国庆后,许多高校均投放了使用手机就可随用的共享单车.某运营商为提高其经营的A品牌共享单车的市场占有率,准备对收费作如下调整:一天中,同一个人第一次使用的车费按0.5元收取,每增加一次,当次车费就比上次车费减少0.1元,第6次开始,当次用车免费.具体收费标准如下:

使用次数

0

1

2

3

4

5(含5次以上)

累计车费

0

0.5

0.9

1.5

同时,就此收费方案随机调查了某高校100名师生在一天中使用A品牌共享单车的意愿,得到如下数据:

使用次数

0

1

2

3

4

5

人数

5

15

10

30

25

15

)写出的值;

)已知该校有5000名师生,且A品牌共享单车投放该校一天的费用为5800元.试估计:收费调整后,此运营商在该校投放A品牌共享单车能否获利? 说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校教学楼AB后方有一斜坡,已知斜坡CD的长为12米,坡角α为60°,根据有关部门的规定,∠α≤39°时,才能避免滑坡危险,学校为了消除安全隐患,决定对斜坡CD进行改造,在保持坡脚C不动的情况下,学校至少要把坡顶D向后水平移动多少米才能保证教学楼的安全?(结果取整数)

(参考数据:sin39°≈0.63,cos39°≈0.78,tan39°≈0.81,≈1.41,≈1.73,≈2.24)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,AB=BC,点OAC的中点,点PAC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.

(1)如图1,请直接写出线段OEOF的数量关系;

(2)如图2,当∠ABC=90°时,请判断线段OEOF之间的数量关系和位置关系,并说明理由

(3)若|CF﹣AE|=2,EF=2,当POF为等腰三角形时,请直接写出线段OP的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第n次操作后,余下的四边形是菱形,则称原平行四边形为n阶准菱形,例如:如图1,ABCD中,若AB=1,BC=2,则ABCD为1阶准菱形.

(1)理解与判断:

邻边长分别为1和3的平行四边形是   阶准菱形;

邻边长分别为3和4的平行四边形是   阶准菱形;

(2)操作、探究与计算:

①已知ABCD的邻边长分别为2,a(a>2),且是3阶准菱形,请画出ABCD及裁剪线的示意图,并在图形下方写出a的值;

②已知ABCD的邻边长分别为a,b(a>b),满足a=7b+r,b=4r,请写出ABCD是几阶准菱形.

查看答案和解析>>

同步练习册答案