精英家教网 > 初中数学 > 题目详情

【题目】如图,一次函数y=2x﹣4x轴交于点A,与y轴交于点E,过点AAE的垂线交y轴于点B,连接AB,以AB为边向上作正方形ABCD(如图所示),则点D的坐标为__________

【答案】(3,2)

【解析】

过点DDFx轴,垂足为F,求得点A和点E的坐标,从而可得到OA、OE的长,然后依据射影定理可得到OB的长,接下来,证明△OBA≌△FAD,从而可得到OB=AF=1,OA=DF=2,故此可得到点D的坐标.

如图所示:过点DDFx轴,垂足为F.

y=0得:2x-4=0,解得:x=2,

OA=2.

x=0y=-4,

OE=4.

OBOE=AO2

OB=1

ABCD为正方形,

∴∠BAO+DAF=90°

又∵∠ADF+DAF=90°

∴∠BAO=ADF.

在△OBA和△FAD中,∠BOA=ADF,BAO=ADF,BA=DF,

∴△OBA≌△FAD,

OB=AF=1,OA=DF=2.

D(3,2).

故答案为:(3,2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx过点B(1,﹣3),对称轴是直线x=2,且抛物线与x轴的正半轴交于点A.

(1)求抛物线的解析式,并根据图象直接写出当y≤0时,自变量x的取值范图;

(2)在第二象限内的抛物线上有一点P,当PABA时,求PAB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解

在⊙I中,弦AFDE相交于点Q,则AQQF=DQQE.你可以利用这一性质解决问题.

问题解决

如图,在平面直角坐标系中,等边△ABC的边BCx轴上,高AOy轴的正半轴上,点Q(0,1)是等边△ABC的重心,过点Q的直线分别交边AB、AC于点D、E,直线DE绕点Q转动,设∠OQD=α(60°<α<120°),△ADE的外接圆⊙Iy轴正半轴于点F,连接EF.

(1)填空:AB=

(2)在直线DE绕点Q转动的过程中,猜想:的值是否相等?试说明理由.

(3)①求证:AQ2=ADAE﹣DQQE;

②记AD=a,AE=b,DQ=m,QE=m(a、b、m、n均为正数),请直接写出mn的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某市为方便行人过马路,打算修建一座高为4x(m)的过街天桥.已知天桥的斜面坡度i=1:0.75是指坡面的铅直高度DE(CF)与水平宽度AE(BF)的比,其中DC∥AB,CD=8x(m).

(1)请求出天桥总长和马路宽度AB的比;

(2)若某人从A地出发,横过马路直行(A→E→F→B)到达B地,平均速度是2.5m/s;返回时从天桥由BC→CD→DA到达A地,平均速度是1.5m/s,结果比去时多用了12.8s,请求出马路宽度AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,A(﹣40),点Cy轴正半轴上的一点,且∠ACB90°ACBC

1)如图①,若点B在第四象限,C02),求点B的坐标;

2)如图②,若点B在第二象限,以OC为直角边在第一象限作等腰RtCOF,连接BF,交y轴于点M,求CM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等腰RtABC的直角边长为32,从直角顶点A作斜边BC的垂线交BCD1,再从D1D1D2ACACD2,再从D2D2D3BCBCD3,则AD1+D2D3+D4D5+D6D7+D8D9_____D1D2+D3D4+D5D6+D7D8+D9D10_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,我们定义直线为抛物线bc为常数,梦想直线;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其梦想三角形”.

已知抛物线与其梦想直线交于AB两点A在点B的左侧,与x轴负半轴交于点C

填空:该抛物线的梦想直线的解析式为______,点A的坐标为______,点B的坐标为______;

如图,点M为线段CB上一动点,将AM所在直线为对称轴翻折,点C的对称点为N,若为该抛物线的梦想三角形,求点N的坐标;

当点E在抛物线的对称轴上运动时,在该抛物线的梦想直线上,是否存在点F,使得以点ACEF为顶点的四边形为平行四边形?若存在,请直接写出点EF的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于x、y的方程组,其中﹣3≤a≤1,给出下列结论:

是方程组的解;

②当a=﹣2时,x+y=0;

③若y≤1,则1≤x≤4;

④若S=3x﹣y+2a,则S的最大值为11.

其中正确的有_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,ABC为等边三角形,FB平分ABCDBF的中点,连接ADBC的延长线于点E,若EFBF,则_______________

查看答案和解析>>

同步练习册答案