| A. | $\frac{8}{3}$$\sqrt{3}$ | B. | 4$\sqrt{3}$ | C. | 6$\sqrt{2}$ | D. | 6$\sqrt{3}$ |
分析 连接OC,由O为正方形的中心,得到∠DCO=∠BCO,又CF与CE为圆O的切线,根据切线长定理得到CO平分∠ECF,可得出∠DCF=∠BCE,由折叠可得∠BCE=∠FCE,再由正方形的内角为直角,可得出∠ECB为30°,在直角三角形BCE中,设BE=x,利用30°所对的直角边等于斜边的一半得到EC=2x,再由正方形的边长为4,得到BC为4,利用勾股定理列出关于x的方程,求出方程的解得到x的值,即可得到EC的长.
解答 解:连接OC,![]()
∵O为正方形ABCD的中心,
∴∠DCO=∠BCO,
又∵CF与CE都为圆O的切线,
∴CO平分∠ECF,即∠FCO=∠ECO,
∴∠DCO-∠FCO=∠BCO-∠ECO,即∠DCF=∠BCE,
又∵△BCE沿着CE折叠至△FCE,
∴∠BCE=∠ECF,
∴∠BCE=∠ECF=∠DCF=$\frac{1}{3}$∠BCD=30°,
在Rt△BCE中,设BE=x,则CE=2x,又BC=4,
根据勾股定理得:CE2=BC2+BE2,即4x2=x2+42,
解得:x=$\frac{4\sqrt{3}}{3}$,
∴CE=2x=$\frac{8\sqrt{3}}{3}$.
故选A.
点评 本题主要考查了切线的性质,涉及正方形的性质、勾股定理、切线长定理以及折叠的性质,熟练掌握定理及性质是解本题的关键.
科目:初中数学 来源: 题型:选择题
| A. | AB=DC,AC=DB | B. | AB=DC,∠ABC=∠DCB | C. | BO=CO,∠A=∠D | D. | AB=DC,∠A=∠D |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 24 | B. | 12 | C. | 16 | D. | 11 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com