【题目】已知等边三角形ABC,点D是边AC上任意一点,延长BC至E,使CE=AD.
(1)如图1,点D是AC中点,求证:DB=DE;
(2)如图2,点D不是AC中点,求证:DB=DE;
(3)如图3,点D不是AC中点,点F是BD的中点,连接AE,AF,求证:AE=2AF.
【答案】(1)见解析;(2)见解析;(3)见解析.
【解析】
(1)根据等边三角形的性质得到BD为∠ABC的角平分线,∠ABC=∠ACB=60°,根据等腰三角形的性质、等腰三角形的判定定理证明;
(2)过D作EF∥DG交AB,交BC于G,证明△BDC≌△EDG,根据全等三角形的性质证明结论;
(3)延长AF至H,使FH=AF,连接DH,证明△ABF≌△HDF,得到AB=HD,∠ABF=∠HDF,证明△ADH≌△ECA,得到AE=AH,证明结论.
证明:(1)∵在等边△ABC中,D是AC的中点,
∴BD为∠ABC的角平分线,∠ABC=∠ACB=60°,
∴
∵CD=CE,
∴∠CDE=∠CED,
∵∠CDE+∠CED=∠ACB,
∴
∴∠CBD=∠CED=30°,
∴BD=DE;
(2)过D作EF∥DG交AB,交BC于G
∴∠DGC=∠ABC=60°,又∠DCG=60°,
∴△DGC为等边三角形,
∴DG=GC=CD,
∴BC﹣GC=AC﹣AD,即AD=BG,
∵AD=CE,
∴BG=CE,
∴BC=GE,
在△BDC和△EDG中,
,
∴△BDC≌△EDG(SAS)
∴BD=DE;
(3)延长AF至H,使FH=AF,连接DH,
在△ABF和△HDF中,
,
∴△ABF≌△HDF(SAS)
∴AB=HD,∠ABF=∠HDF,
∴AC=HD,AB∥DH,
∴∠ADH=180°﹣∠BAC=120°,
在△ADH和△ECA中,
∴△ADH≌△ECA(SAS)
∴AE=AH,
∵AH=2AF,
∴AE=2AF.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3经过点 B(﹣1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t.
(1)求抛物线的表达式;
(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)
(3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;
(4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在梯形中,,若,,,分别是梯形各边、、、的中点.
求证:四边形平行四边形;
当梯形满足什么条件时,四边形是菱形;
在的条件下,梯形满足什么条件时,四边形是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.
(1)求证:△ACF∽△DAE;
(2)若S△AOC=,求DE的长;
(3)连接EF,求证:EF是⊙O的切线.
【答案】(1) 见解析; (2)3 ;(3)见解析.
【解析】试题分析:(1)根据圆周角定理得到∠BAC=90°,根据三角形的内角和得到∠ACB=60°根据切线的性质得到∠OAF=90°,∠DBC=90°,于是得到∠D=∠AFC=30°由相似三角形的判定定理即可得到结论;
(2)根据S△AOC=,得到S△ACF=,通过△ACF∽△DAE,求得S△DAE=,过A作AH⊥DE于H,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;
(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到∠OFG=(180°﹣∠EOF)=30°,于是得到∠AFO=∠GFO,过O作OG⊥EF于G,根据全等三角形的性质得到OG=OA,即可得到结论.
试题解析:(1)证明:∵BC是⊙O的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°
∵OA=OC,∴∠AOC=60°,∵AF是⊙O的切线,∴∠OAF=90°,∴∠AFC=30°,∵DE是⊙O的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE;
(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵S△AOC=,∴S△ACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴S△DAE=,过A作AH⊥DE于H,∴AH=DH=DE,∴S△ADE=DEAH=×=,∴DE=;
(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFO,在△AOF与△BOE中,∵∠OBE=∠OAF,∠OEB=∠AFO,OA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过O作OG⊥EF于G,∴∠OAF=∠OGF=90°,在△AOF与△OGF中,∵∠OAF=∠OGF,∠AFO=∠GFO,OF=OF,∴△AOF≌△GOF,∴OG=OA,∴EF是⊙O的切线.
【题型】解答题
【结束】
25
【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.
(1)填空:点B的坐标为 ;
(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;
(3)①求证:;
②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知点的坐标为.将点绕着原点按逆时针方向旋转得到点,延长到点,使;再将点绕着原点按逆时针方向旋转得到点,延长到点,使;…如此继续下去.
求:(1)点的坐标;(2)点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com