精英家教网 > 初中数学 > 题目详情

【题目】已知等边三角形ABC,点D是边AC上任意一点,延长BCE,使CEAD

1)如图1,点DAC中点,求证:DBDE

2)如图2,点D不是AC中点,求证:DBDE

3)如图3,点D不是AC中点,点FBD的中点,连接AEAF,求证:AE2AF

【答案】1)见解析;(2)见解析;(3)见解析.

【解析】

1)根据等边三角形的性质得到BD为∠ABC的角平分线,∠ABC=∠ACB60°,根据等腰三角形的性质、等腰三角形的判定定理证明;

2)过DEFDGAB,交BCG,证明△BDC≌△EDG,根据全等三角形的性质证明结论;

3)延长AFH,使FHAF,连接DH,证明△ABF≌△HDF,得到ABHD,∠ABF=∠HDF,证明△ADH≌△ECA,得到AEAH,证明结论.

证明:(1)∵在等边△ABC中,DAC的中点,

BD为∠ABC的角平分线,∠ABC=∠ACB60°

CDCE

∴∠CDE=∠CED

∵∠CDE+CED=∠ACB

∴∠CBD=∠CED30°

BDDE

2)过DEFDGAB,交BCG

∴∠DGC=∠ABC60°,又∠DCG60°

∴△DGC为等边三角形,

DGGCCD

BCGCACAD,即ADBG

ADCE

BGCE

BCGE

在△BDC和△EDG中,

∴△BDC≌△EDGSAS

BDDE

3)延长AFH,使FHAF,连接DH

在△ABF和△HDF中,

∴△ABF≌△HDFSAS

ABHD,∠ABF=∠HDF

ACHDABDH

∴∠ADH180°﹣∠BAC120°

在△ADH和△ECA中,

∴△ADH≌△ECASAS

AEAH

AH2AF

AE2AF

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】若四边形的两条对角线分别平分两组对角,则该四边形一定是(

A. 平行四边形 B. 菱形 C. 矩形 D. 正方形

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,∠ABC=45°F是高ADBE的交点,CD=4,则线段DF的长为(

A.4B.5C.6D.8

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知函数y=|x2﹣x﹣2|,直线y=kx+4恰好与y=|x2﹣x﹣2|的图象只有三个交点,则k的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=ax2+bx+3经过点 B﹣10),C23),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t

1)求抛物线的表达式;

2)过点My轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)

3)在(2)的条件下,当t为何值时,△PAD的面积最大?并求最大值;

4)在(2)的条件下,是否存在点P,使△PAD为直角三角形?若存在,直接写出t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在梯形中,,若分别是梯形各边的中点.

求证:四边形平行四边形;

当梯形满足什么条件时,四边形是菱形;

的条件下,梯形满足什么条件时,四边形是正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O是△ABC的外接圆,BC是⊙O的直径,∠ABC=30°,过点B作⊙O的切线BD,与CA的延长线交于点D,与半径AO的延长线交于点E,过点A作⊙O的切线AF,与直径BC的延长线交于点F.

(1)求证:△ACF∽△DAE;

(2)若S△AOC=,求DE的长;

(3)连接EF,求证:EF是⊙O的切线.

【答案】(1) 见解析; (2)3 ;(3)见解析.

【解析】试题分析:(1)根据圆周角定理得到BAC=90°,根据三角形的内角和得到ACB=60°根据切线的性质得到OAF=90°,∠DBC=90°,于是得到D=∠AFC=30°由相似三角形的判定定理即可得到结论;

(2)根据SAOC=,得到SACF=,通过ACF∽△DAE,求得SDAE=,过AAHDEH,解直角三角形得到AH=DH=DE,由三角形的面积公式列方程即可得到结论;

(3)根据全等三角形的性质得到OE=OF,根据等腰三角形的性质得到OFG=(180°﹣∠EOF)=30°,于是得到AFO=∠GFO,过OOGEFG,根据全等三角形的性质得到OG=OA,即可得到结论.

试题解析:(1)证明:BCO的直径,∴∠BAC=90°,∵∠ABC=30°,∴∠ACB=60°

OA=OC,∴∠AOC=60°,∵AFO的切线,∴∠OAF=90°,∴∠AFC=30°,∵DEO的切线,∴∠DBC=90°,∴∠D=∠AFC=30,∵∠DAE=ACF=120°,∴△ACF∽△DAE

(2)∵∠ACO=∠AFC+∠CAF=30°+∠CAF=60°,∴∠CAF=30°,∴∠CAF=∠AFC,∴AC=CF,∴OC=CF,∵SAOC=,∴SACF=,∵∠ABC=∠AFC=30°,∴AB=AF,∵AB=BD,∴AF=BD,∴∠BAE=∠BEA=30°,∴AB=BE=AF,∴,∵△ACF∽△DAE,∴=,∴SDAE=,过AAHDEH,∴AH=DH=DE,∴SADE=DEAH=×=,∴DE=

(3)∵∠EOF=∠AOB=120°,∴∠OEB=∠AFOAOFBOE中,∵∠OBE=∠OAF,∠OEB=∠AFOOA=OB,∴△AOF≌△BEO,∴OE=OF,∴∠OFG=(180°﹣∠EOF)=30°,∴∠AFO=∠GFO,过OOGEFG,∴∠OAF=∠OGF=90°,在AOFOGF中,∵∠OAF=∠OGF,∠AFO=∠GFOOF=OF,∴△AOF≌△GOF,∴OG=OA,∴EFO的切线.

型】解答
束】
25

【题目】如图,在平面直角坐标系中,O为原点,四边形ABCO是矩形,点A,C的坐标分别是A(0,2)和C(2,0),点D是对角线AC上一动点(不与A,C重合),连结BD,作DE⊥DB,交x轴于点E,以线段DE,DB为邻边作矩形BDEF.

(1)填空:点B的坐标为   

(2)是否存在这样的点D,使得△DEC是等腰三角形?若存在,请求出AD的长度;若不存在,请说明理由;

(3)①求证:

②设AD=x,矩形BDEF的面积为y,求y关于x的函数关系式(可利用①的结论),并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,已知点的坐标为.将点绕着原点按逆时针方向旋转得到点,延长到点,使;再将点绕着原点按逆时针方向旋转得到点,延长到点,使;…如此继续下去.

求:(1)的坐标;(2)的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4.Rt△MPN中,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=________.

查看答案和解析>>

同步练习册答案