精英家教网 > 初中数学 > 题目详情

【题目】如图1,OP∠MON的平分线,请你利用该图形画一对以OP所在直线为对称轴的全等三角形,并将添加的全等条件标注在图上.

请你参考这个作全等三角形的方法,解答下列问题:

(1)如图2,在△ABC中,∠ACB是直角,∠B=60°,AD、CE分别是∠BAC∠BCA的平分线,AD、CE相交于点F,求∠EFA的度数;

(2)在(1)的条件下,请判断FEFD之间的数量关系,并说明理由;

(3)如图3,在△ABC中,如果∠ACB不是直角,而( 1 )中的其他条件不变,试问在(2)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由.

【答案】160°2FE=FD3FE=FD仍然成立

【解析】

OM、ON上分别截取OB、OC,使OB=OC,分别过点B、COM、ON的垂线,两垂线交于点Q,连接OQ,则△OBQ≌△OCQ;(1)已知∠A CB=90°,∠B=60°,根据三角形的内角和定理求得.∠BAC=30°.再由AD、CE分别是∠BAC∠BCA的平分线,根据角平分线的定义求得∠DAC=15°,∠ECA=45°.根据三角形外角的性质即可求得∠EFA=60°;(2)FE=FD,AC上截取AG=AE,证明△EAF≌△GAF, 根据全等三角形的性质可得FE=FG,∠EFA=∠GFA=60°.再证得∠DFC=∠GFC,利用ASA判定△FDC≌△FGC,由此可得FD=FG,从而证得 FE=FD;(3)(2)中的结论FE=FD仍然成立,证明类比(2)的方法完成.

如图所示,△OBQ≌△OCQ;

1)如图2,∵∠ACB=90°,∠B=60°.

∴∠BAC=30°.

∵AD、CE分别是∠BAC∠BCA的平分线,

∴∠DAC=∠BAC=15°,∠ECA=∠ACB=45°.

∴∠EFA=∠DAC+∠ECA=15°+45°=60°.

(2)FE=FD.

如图2,在AC上截取AG=AE,连接FG.

∵AD∠BAC的平分线,

∴∠EAF=∠GAF,

△EAF△GAF

∴△EAF≌△GAF(SAS),

∴FE=FG,∠EFA=∠GFA=60°.

∴∠GFC=180°﹣60°﹣60°=60°.

∵∠DFC=∠EFA=60°,

∴∠DFC=∠GFC.

△FDC△FGC

∴△FDC≌△FGC(ASA),

∴FD=FG.

∴FE=FD.

(3)(2)中的结论FE=FD仍然成立.

同(2)可得△EAF≌△HAF,

∴FE=FH,∠EFA=∠HFA.

又由(1)知∠FAC=∠BAC,∠FCA=∠ACB,

∴∠FAC+∠FCA=(∠BAC+∠ACB)==60°.

∴∠AFC=180°﹣(∠FAC+∠FCA)=120°.

∴∠EFA=∠HFA=180°﹣120°=60°.

同(2)可得△FDC≌△FHC,

∴FD=FH.

∴FE=FD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,对角线BD的垂直平分线MN与AD相交于点M,与BD相交于点O,与BC相交于点N,连接BM、DN.

(1)求证:四边形BMDN是菱形;
(2)若AB=4,AD=8,求菱形BMDN的面积和对角线MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知DE分别为△ABCABBC上的动点,直线DE与直线AC相交于F,∠ADE的平分线与∠B的平分线相交于P,∠ACB的平分线与∠F的平分线相交于Q

(1)如图1,当FAC的延长线上时,求∠P与∠Q之间的数量关系;

(2)如图2,当FAC的反向延长线上时,求∠P与∠Q之间的数量关系(用等式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OE平分∠AOB,BD⊥OA于点D,AC⊥BO于点C,则图中全等三角形共有_______对.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】【背景】国家为扶持软件企业的发展,对企业实行月补贴,以提高企业的净利润.
【问题】国内某软件企业2014 年12月份并未如期收到700万元的月补贴,这样导致2014 年的净利润增长只有55%.而若补贴及时到位,则2014 年的净利润增长将达到60%.
(1)求2013年该企业净利润是多少万元?
(2)又据统计,2014年12月该企业不含月补贴的月净利润为2100万元,2015年1月及2月不含月补贴的月净利润比上月增加的百分数分别是m和 2m,这两个月的月补贴相等,且都在2014年12月基础上增加了2m.据推算,若以后各月不含月补贴的月净利润和月补贴均稳定在2月份的水平不变,则 2015年该企业净利润将达到2013年的3倍,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,已知AD,AE分别是△ADC和△ABC的高和中线,AB=6cm,AC=8cm,BC=10cm,CAB=90°.试求:

(1)AD的长;

(2)ABE的面积;

(3)ACE和△ABE的周长的差.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AOB45AOB内有一定点P,且OP10.在OA上有一动点QOB上有一动点R.若ΔPQR周长最小,则最小周长是()

A. 10 B. C. 20 D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠ACB=90°,∠A=30°BD△ABC的角平分线,DEAB于点E.

(1)如图1,连接EC,求证:△EBC是等边三角形;

(2)M是线段CD上的一点(不与点CD重合),以BM为一边,在BM的下方作∠BMG=60°MGDE延长线于点G.求证:AD=DG+MD

(3)N是线段AD上的一点,以BN为一边,在BN的下方作∠BNG=60°NGDE延长线于点G.请在图3中画出图形,并直接写出NDDGAD数量之间的关系.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,Rt△ABC中,∠C=90°,AB=15,BC=9,点P,Q分别在BC,AC上,CP=3x,CQ=4x(0<x<3).点D在线段PQ上,且PD=PC.

(1)求证:PQ∥AB;
(2)若点D在∠BAC的平分线上,求CP的长.

查看答案和解析>>

同步练习册答案