精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,△ABC和△DBE均为等腰直角三角形.
(1)求证:AD=CE;
(2)求证:AD和CE垂直.

【答案】
(1)证明:∵△ABC和△DBE是等腰直角三角形,

∴AB=BC,BD=BE,∠ABC=∠DBE=90°,

∴∠ABC﹣∠DBC=∠DBE﹣∠DBC,

即∠ABD=CBE,

在△ABD和△CBE中,

∴△ABD≌△CBE(SAS),

∴AD=CE


(2)证明:延长AD分别交BC和CE于G和F,如图所示:

∵△ABD≌△CBE,

∴∠BAD=∠BCE,

∵∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,

又∵∠BGA=∠CGF,

∵∠BAD+∠ABC+∠BGA=∠BCE+∠AFC+∠CGF=180°,

∴∠AFC=∠ABC=90°,

∴AD⊥CE.


【解析】(1)由等腰直角三角形的性质得出AB=BC,BD=BE,∠ABC=∠DBE=90°,得出∠ABD=CBE,证出△ABD≌△CBE(SAS),得出AD=CE;(2)△ABD≌△CBE得出∠BAD=∠BCE,再由∠BAD+∠ABC∠∠BGA=∠BCE+∠AFC+∠CGF=180°,得出∠AFC=∠ABC=90°,证出结论.
【考点精析】解答此题的关键在于理解等腰直角三角形的相关知识,掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】α是锐角,若sinαcos15°,则α_____°.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有理数的加法法则:同号相加时,取 的符号,并把它们的绝对值相加.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:数学活动课上,乐老师给出如下定义:有一组对边相等而另一组对边不相等的凸四边形叫做对等四边形.

解:

(1)如图1,已知A、B、C在格点(小正方形的顶点)上,请在方格图中画出以格点为顶点,AB、BC为边的两个对等四边形ABCD;

(2)如图2,在圆内接四边形ABCD中,AB是⊙O的直径,AC=BD.求证:四边形ABCD是对等四边形;

(3)如图3,在Rt△PBC中,∠PCB=90°,BC=11,tan∠PBC=,点A在BP边上,且AB=13.用圆规在PC上找到符合条件的点D,使四边形ABCD为对等四边形,并求出CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】△ABC在平面直角坐标系中的位置如图所示.A、B、C三点在格点上.

(1)作出△ABC关于x轴对称的△A1B1C1 , 并写出点C1的坐标;
(2)作出△ABC关于y对称的△A2B2C2 , 并写出点C2的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】美国NBA篮球职业联赛冠军队某投球手罚球时,“三投都不中”这一事件是(  )

A.不可能事件B.必然事件C.随机事件D.无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,AB=13cm,AC=20cm,BC边上的高为12cm,则△ABC的面积为cm2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知正比例函数y= x的图象与一次函数y=kx﹣3的图象相交于点(2,a).
(1)求a的值.
(2)求一次函数的表达式.
(3)在同一坐标系中,画出这两个函数的图象.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点C在线段AB上,AC=6cm,MB=10cm,点M、N分别为AC、BC的中点.

(1)求线段BC的长;
(2)求线段MN的长;
(3)若C在线段AB延长线上,且满足AC﹣BC=b cm,M,N分别是线段AC,BC的中点,你能猜想MN的长度吗?请写出你的结论(不需要说明理由).

查看答案和解析>>

同步练习册答案