精英家教网 > 初中数学 > 题目详情
已知抛物线yax2bxc经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.

(1)求抛物线的解析式和对称轴;      
(2)设点P是直线l上的一个动点,当△PAC是以AC为斜边的Rt△时,求点P的坐标;
(3)在直线l上是否存在点M,使△MAC为等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由;
(4)设过点A的直线与抛物线在第一象限的交点为N,当△ACN的面积为时,求直线AN的解析式.
(1)y=-x2+2x+3  (2) P1(1,1),P2(1,2)   (3)

试题分析:
解:(1)将三点代入y=ax2+bx+c中,易求解析式为:
对称轴为:直线 
(2)设点P(1,y)是直线l上的一个动点,作CF⊥l于F,lx轴于E,
则AC2=AO2+CO2=10,CP2=CF2+PF2=1+(3-y)2
AP2=AE2+PE2=4+y2, ∴由CP2+AP2=AC2
得:+4+y2=10,解得
∴P点的坐标为P1(1,1)、P2(1, 2)
解法二; 用△相似解法更简单如下:
∵CP⊥AP,∴△CPF∽△PAE,∴,∴∴解得
(3)
设点M(1,m), 与(2)同理可得:AC2=10,CM2,AM2=4+m2
①当AC=CM时,10=,解得:m=0或m=6(舍去)
②当AC=AM时,10=4+m2, 解得:mm
③当CM=AM时,=4+m2,解得:m=1
检验:当m=6时,M、A、C三点共线,不合题意,故舍去;
综上可知,符合条件的M点有4个,
M坐标为(1,0) 、(1,)、(1,-)、(1,1)

(4)设直线AN的解析式为,且交y轴于点K,∵过点A(―1, 0),∴
∴K(0,k),∵N是直线AN与抛物线的交点,∴,解得x=3―k
x=―1(舍去),∴N点的横坐标为x=3―kk<3)  
由S△ACN=S△ACK+S△CKNCK·OA+CK·NJ=(3―k)×1+(3―k2

,解得k(舍去),或k
∴直线AN的解析式为
点评:熟知上述性质概念,本题综合性很强,运用的知识点很多,要认真审题才可解之,还需做辅助线求得,在二问中有两个答案易漏求,求得方法也不唯一,三问中可求有五个点,有一个不合题意需舍去,四问中同样也有一个要舍去,计算量较多,易出错,难度较大,属于难题。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系中,直线y=﹣2x+42交x轴于点A,交直线y=x于点B,抛物线y=ax2﹣2x+c分别交线段AB、OB于点C、D,点C和点D的横坐标分别为16和4,点P在这条抛物线上.

(1)求点C、D的纵坐标.
(2)求a、c的值.
(3)若Q为线段OB上一点,P、Q两点的纵坐标都为5,求线段PQ的长.
(4)若Q为线段OB或线段AB上一点,PQ⊥x轴,设P、Q两点间的距离为d(d>0),点Q的横坐标为m,直接写出d随m的增大而减小时m的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,二次函数的图象与y轴交于点C(0,4),与x轴交于点A、B,点A的坐标为(4,0).

(1)求该二次函数的关系式;
(2)写出该二次函数的对称轴和顶点坐标;
(3)点Q是线段AB上的动点,过点Q作QE∥AC,交BC于点E,连接CQ.当△CQE的面积最大时,求点Q的坐标;
(4)若平行于x轴的动直线与该抛物线交于点P,与直线AC交于点F,点D的坐标为(2,0).问:是否存在这样的直线,使得△ODF是等腰三角形?若存在,请求出点P的坐标;若不存在,请说明理由。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某商业公司为指导某种应季商品的生产和销售,对三月份至七月份该商品的销售和生产进行了调研,结果如下:一件商品的售价M(元)与时间t(月)的关系可用一条线段上的点来表示(如图1);一件商品的成本Q(元)与时间t(月)的关系可用一条抛物线上的点来表示,其中6月份成本最高(如图2).
(1)  一件商品在3月份出售时的利润是多少元?(利润=售价-成本)
(2)求图2中表示一件商品的成本Q(元)与时间t(月)之间的函数关系式;
(3)你能求出3月份至7月份一件商品的利润W(元)与时间t(月)之间的函数关系式吗?若该公司能在一个月内售出此种商品30 000件,请你计算一下该公司在一个月内最少获利多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,直角梯形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA=AB=2,OC=3,过点B作BD⊥BC,交OA于点D.将∠DBC绕点B按顺时针方向旋转,角的两边分别交y轴的正半轴、x轴的正半轴于点E和F.

(1)求经过A、B、C三点的抛物线的解析式;
(2)当BE经过(1)中抛物线的顶点时,求CF的长;
(3)在抛物线的对称轴上取两点P、Q(点Q在点P的上方),且PQ=1,要使四边形BCPQ的周长最小,请直接写出P点的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

将抛物线y=2x2沿x轴方向向左平移1个单位后再沿y轴方向向上平移2个单位所得抛物线为
A.y=2(x-1)2+2B.y=2(x+1)2+2
C.y=2(x-1)2-2D.y=2(x+1)2-2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,梯形中,.动点从点出发,以每秒个单位长度的速度在线段上运动;动点同时从点出发,以每秒个单位长度的速度在线段上运动.以为边作等边△,与梯形在线段的同侧.设点运动时间为,当点到达点时,运动结束.

(1)当等边△的边恰好经过点时,求运动时间的值;
(2)在整个运动过程中,设等边△与梯形的重合部分面积为,请直接写
之间的函数关系式和相应的自变量的取值范围;
(3)如图,当点到达点时,将等边△绕点旋转(),
直线分别与直线、直线交于点.是否存在这样的,使△为等腰三角形?
若存在,请求出此时线段的长度;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,甲、乙两人进行羽毛球比赛,甲发出一颗十分关键的球,出手点为P,羽毛球距地面高度h(米)与其飞行的水平距离s(米)之间的关系式为.若球网AB距原点5米,乙(用线段CD表示)扣球的最大高度为2.25米,

(1)羽毛球的出手点高度为__________米;
(2)设乙的起跳点C的横坐标为m,若乙原地起跳,因球的高度高于乙扣球的最大高度而导致接失败,则m取值范围是__________.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

函数y=ax2+bx+c的图像如图所示,那么关于x的方程ax2+bx+c-4=0的根的情况是(     )
A.有两个不相等的实数根B.有两个异号的实数根
C.有两个相等的实数根D.没有实数根

查看答案和解析>>

同步练习册答案