精英家教网 > 初中数学 > 题目详情

【题目】如图,在矩形ABCD中,AB6P为边CD上一点,把BCP沿直线BP折叠,顶点C折叠到C',连接BC'AD交于E,连接CEBP交于点Q,若CEBE

1)求证:ABE∽△DEC

2)当AD13时,AEDE,求CE的长;

3)连接C'Q,直接写出四边形C'QCP的形状:   .当CP4时,并求CEEQ的值.

【答案】(1)见解析;(2)CE=;(3)菱形,理由见解析

【解析】

1)由题意可得∠AEB+CED=90°,且∠ECD+CED=90°,可得∠AEB=ECD,且∠A=D=90°,则可证△ABE∽△DEC

2)设AE=x,则DE=13-x,由相似三角形的性质可得,即:,可求x的值,即可得DE=9,根据勾股定理可求CE的长;

3)由折叠的性质可得CP=C'PCQ=C'Q,∠C'PQ=CPQ,∠BC'P=BCP=90°,由平行线的性质可得∠C'PQ=CQP=CPQ,即可得CQ=CP=C'Q=C'P,则四边形C'QCP是菱形,通过证△C'EQ∽△EDC,可得,即可求CEEQ的值.

1)∵CEBE

∴∠BEC90°

∴∠AEB+CED90°

又∵∠ECD+CED90°

∴∠AEB=∠ECD

又∵∠A=∠D90°

∴△ABE∽△DEC

2)设AEx,则DE13x

由(1)知:△ABE∽△DEC

,即:

x213x+360

x14x29

又∵AEDE

AE4DE9

RtCDE中,由勾股定理得:

3)∵折叠,

CPC'PCQC'Q,∠C'PQ=∠CPQ,∠BC'P=∠BCP90°

CEBC',∠BC'P90°

CEC'P

∴∠C'PQ=∠CQP

∴∠CQP=∠CPQ

CQCP

CQCPC'QC'P

∴四边形C'QCP是菱形,

故答案为:菱形;

∵四边形C'QCP是菱形,

C'QCPC'QCP,∠EQC'=∠ECD

又∵∠C'EQ=∠D90°

∴△C'EQ∽△EDC

即:CEEQDCC'Q6×424.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙OABAC,∠BAC36°,过点AADBC,与∠ABC的平分线交于点DBDAC交于点E,与⊙O交于点F

(1)求∠DAF的度数;

(2)求证:AE2EFED

(3)求证:AD是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了预防疾病,某单位对办公室采用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成为正比例,药物燃烧后,yx成反比例(如图),现测得药物8分钟燃毕,此时室内空气中每立方米的含药量6毫克,请根据题中所提供的信息,解答下列问题:

(1)药物燃烧时,y关于x的函数关系式为________,自变量x的取值范为________;药物燃烧后,y关于x的函数关系式为________.

(2)研究表明,当空气中每立方米的含药量低于1.6毫克时员工方可进办公室,那么从消毒开始,至少需要经过________分钟后,员工才能回到办公室;

(3)研究表明,当空气中每立方米的含药量不低于3毫克且持续时间不低于10分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图是抛物线型拱桥,当拱顶离水面8m时,水面宽AB12m.当水面上升6m时达到警戒水位,此时拱桥内的水面宽度是多少m

下面给出了解决这个问题的两种方法,请补充完整:

方法一:如图1,以点A为原点,AB所在直线为x轴,建立平面直角坐标系xOy

此时点B的坐标为(      ),抛物线的顶点坐标为(      ),

可求这条抛物线所表示的二次函数的解析式为   

y6时,求出此时自变量x的取值,即可解决这个问题.

方法二:如图2,以抛物线顶点为原点,对称轴为y轴,建立平面直角坐标系xOy

这时这条抛物线所表示的二次函数的解析式为   

y   时,求出此时自变量x的取值为   ,即可解决这个问题.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在x轴的正半轴上依次截取OA1A1A2A2A3A3A4A4A5,过点A1A2A3A4A5分别作x轴的垂线与反比例函数yx≠0)的图象相交于点P1P2P3P4P5,得直角三角形OP1A1A1P2A2A2P3A3A3P4A4A4P5A5,并设其面积分别为S1S2S3S4S5,则S10_____.(n≥1的整数)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c>3b;(3)8a+7b+2c>0;(4)若点A(﹣3,y1)、点B(﹣,y2)、点C(,y3)在该函数图象上,则y1<y3<y2;(5)若方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.其中正确的结论有(  )

A. 2个 B. 3个 C. 4个 D. 5个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形OABC在平面直角坐标系中,若x2﹣2x+2=0的两根是x1、x2,且OC=x1+x2,OA=x1x2

(1)求B点的坐标.

(2)把△ABC沿AC对折,点B落在点B′处,线段AB′与x轴交于点D,求直线BD的解析式.

(3)在平面上是否存在点P,使D、C、B、P四点形成的四边形为平形四边形?若存在,请直接写出P点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图已知第一象限内的点A在反比例函数y=的图象上第二象限内的点B在反比例函数y=的图象上OAOB,cosA=k的值为( )

A. -3 B. -4 C. D. -2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABACCDAB于点D,点O是∠BAC的平分线上一点,⊙OAB相切于点M,与CD相切于点N

(1)求证:∠AOC135°;

(2)NC3BC2,求DM的长.

查看答案和解析>>

同步练习册答案