【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)的顶点为B(2,1),且过点A(0,2),直线y=x与抛物线交于点D,E(点E在对称轴的右侧),抛物线的对称轴交直线y=x于点C,交x轴于点G,EF⊥x轴,垂足为F,点P在抛物线上,且位于对称轴的右侧,PQ⊥x轴,垂足为点Q,△PCQ为等边三角形
(1)求该抛物线的解析式;
(2)求点P的坐标;
(3)求证:CE=EF;
(4)连接PE,在x轴上点Q的右侧是否存在一点M,使△CQM与△CPE全等?若存在,试求出点M的坐标;若不存在,请说明理由.[注:3+2 =( +1)2].
【答案】
(1)
解:设抛物线的表达式为y=a(x﹣2)2+1,将点A(0,2)代入,得a(0﹣2)2+1=2,
解这个方程,得a= ,
∴抛物线的表达式为y= (x﹣2)2+1= x2﹣x+2;
(2)
解:将x=2代入y=x,得y=2
∴点C的坐标为(2,2)即CG=2,
∵△PCQ为等边三角形
∴∠CQP=60°,CQ=PQ,
∵PQ⊥x轴,
∴∠CQG=30°,
∴CQ=4,GQ=2 .
∴OQ=2+2 ,PQ=4,
将y=4代入y= (x﹣2)2+1,得4= (x﹣2)2+1
解这个方程,得x1=2+2 =OQ,x2=2﹣2 <0(不合题意,舍去).
∴点P的坐标为(2+2 ,4);
(3)
证明:把y=x代入y= x2﹣x+2,得x= x2﹣x+2
解这个方程,得x1=4+2 ,x2=4﹣2 <2(不合题意,舍去)
∴y=4+2 =EF
∴点E的坐标为(4+2 ,4+2 )
∴OE= =4+4 ,
又∵OC= =2 ,
∴CE=OE﹣OC=4+2 ,
∴CE=EF;
(4)
解:不存在.
如图,假设x轴上存在一点,使△CQM≌△CPE,则CM=CE,∠QCM=∠PCE
∵∠QCP=60°,
∴∠MCE=60°
又∵CE=EF,
∴EM=EF,
又∵点E为直线y=x上的点,
∴∠CEF=45°,
∴点M与点F不重合.
∵EF⊥x轴,这与“垂线段最短”矛盾,
∴原假设错误,满足条件的点M不存在.
【解析】(1)根据抛物线的顶点是(2,1),因而设抛物线的表达式为y=a(x﹣2)2+1,把A的坐标代入即可求得函数的解析式;(2)根据△PCQ为等边三角形,则△CGQ中,∠CQD=30°,CG的长度可以求得,利用直角三角形的性质,即可求得CQ,即等边△CQP的边长,则P的纵坐标代入二次函数的解析式,即可求得P的坐标;(3)解方程组即可求得E的坐标,则EF的长等于E的纵坐标,OE的长度,利用勾股定理可以求得,同理,OC的长度可以求得,则CE的长度即可求解;(4)可以利用反证法,假设x轴上存在一点,使△CQM≌△CPE,可以证得EM=EF,即M与F重合,与点E为直线y=x上的点,∠CEF=45°即点M与点F不重合相矛盾,故M不存在.
科目:初中数学 来源: 题型:
【题目】(根据市教委提出的学生每天体育锻炼不少于1小时的要求,为确保阳光体育运动时间得到落实,某校对九年级学生每天参加体育锻炼的时间作了一次抽样调查,其中部分结果记录如下:
时间分组(小时) | 频数(人数) | 频率 |
0≤t<0.5 | 10 | 0.2 |
0.5≤t<1 | 0.4 | |
1≤t<1.5 | 10 | 0.2 |
1.5≤t<2 | 0.1 | |
2≤t<2.5 | 5 | |
合计 | 1 |
请你将频数分布表和频数分布直方图补充完整.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB边的垂直平分线交BC于D,AC边的垂直平分线交BC于E, 与相交于点O,△ADE的周长为6cm.
(1)求BC的长;
(2)分别连结OA、OB、OC,若△OBC的周长为16cm,求OA的长;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】夏季来临,商场准备购进甲、乙两种空调已知甲种空调每台进价比乙种空调多500元,用40000元购进甲种空调的数量与用30000元购进乙种空调的数量相同请解答下列问题:
求甲、乙两种空调每台的进价;
若甲种空调每台售价2500元,乙种空调每台售价1800元,商场欲同时购进两种空调20台,且全部售出,请写出所获利润元与甲种空调台之间的函数关系式;
在的条件下,若商场计划用不超过36000元购进空调,且甲种空调至少购进10台,并将所获得的最大利润全部用于为某敬老院购买1100元台的A型按摩器和700元台的B型按摩器直接写出购买按摩器的方案.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D为△ABC边BC的延长线上一点.∠ABC的角平分线与∠ACD的角平分线交于点M,将△MBC以直线BC为对称轴翻折得到△NBC,∠NBC的角平分线与∠NCB的角平分线交于点Q,若∠A=48°,则∠BQC的度数为( )
A. 138° B. 114° C. 102° D. 100°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A出发,沿AB以4cm/s的速度向点B运动;同时点Q从C点出发,沿CA以3cm/s的速度向A点运动.设运动时间为x(s).
(1)当x为何值时,PQ∥BC;
(2)当△APQ与△CQB相似时,AP的长为 . ;
(3)当S△BCQ:S△ABC=1:3,求S△APQ:S△ABQ的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,⊙O是△ABC的外接圆, ,点D在边BC上,AE∥BC,AE=BD.
(1)求证:AD=CE;
(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“世界那么大,我想去看看”一句话红遍网络,骑自行车旅行越来越受到人们的喜爱,各种品牌的山地自行车相继投放市场.顺风车行经营的A型车2015年6月份销售总额为3.2万元,今年经过改造升级后A型车每辆销售价比去年增加400元,若今年6月份与去年6月份卖出的A型车数量相同,则今年6月份A型车销售总额将比去年6月份销售总额增加25%.
(1)求今年6月份A型车每辆销售价多少元(用列方程的方法解答);
(2)该车行计划7月份新进一批A型车和B型车共50辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A、B两种型号车的进货和销售价格如表:
A型车 | B型车 | |
进货价格(元/辆) | 1100 | 1400 |
销售价格(元/辆) | 今年的销售价格 | 2400 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C顺时针旋转60°得△ADC,连接OD.当AO=5,BO=4,α=150°时,则CO的长为_________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com