精英家教网 > 初中数学 > 题目详情

【题目】反比例函数y1=(x>0)的图象与一次函数y2=﹣x+b的图象交于A,B两点,其中A(1,2)

(1)求这两个函数解析式;

(2)在y轴上求作一点P,使PA+PB的值最小,并直接写出此时点P的坐标.

【答案】(1)y1=;y2=﹣x+3;(2)点P(0,).

【解析】

将已知点A分别代入反比例函数和一次函数里,即可求出k、b,再将k、b的值代入两个函数里,就可以求出两个函数的解析式

A点关于y轴的对称点,并与B连接这条线段即为所求。根据已知求出B点坐标,再求出新线的解析式,最后求出P点坐标

(1)将点A(1,2)代入y1=,得:k=2,

y1=

将点A(1,2)代入y2=﹣x+b,得:﹣1+b=2,

解得:b=3,

y2=﹣x+3;

(2)作点A关于y轴的对称点A′(﹣1,2),连接A′B,交y轴于点P,即为所求,

如图所示:

得:

B(2,1),

A′B所在直线解析式为y=mx+n,

根据题意,得:

解得:

A′B所在直线解析式为y=3x﹣5,

x=0时,y=

所以点P(0,).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,方格纸中的每个小方格都是边长为1个单位的正方形,ABC的顶点均在格点上,建立平面直角坐标系后,点A的坐标为(-4,1),点B的坐标为(-2,1)。

1)画出ABCC点顺时针旋转90°后得到的A1B1C1并写出A1点的坐标。

(2)以原点O为位似中心,位似比为2,在第二象限内作ABC的位似图形A2B2C2,并写出C2的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知边长为1的正方形ABCD,P是对角线AC上的一个动点(与点A. C不重合),过点PPEPBPE交射线DC于点E,过点EEFAC,垂足为点F,当点E落在线段CD上时(如图)

1)求证:PB=PE

2)在点P的运动过程中,PF的长度是否发生变化?若不变,试求出这个不变的值,若变化,试说明理由;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OB是∠AOC的平分线,OD是∠COE的平分线.

1)若∠AOB40°,∠DOE30°,求∠BOD的度数;

2)若∠AOD与∠BOD互补,且∠DOE35°,求∠AOC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】完成下面的证明.

已知:如图,ABDE,求证:∠D+BCD﹣∠B180°.

证明:过点CCFAB

CFAB(已作),

∴∠1   

∵∠2=∠BCD﹣∠1

∴∠2=∠BCD﹣∠B   

ABDECFAB(已知),

CFDE   

∴∠D+2180°   

∴∠D+BCD﹣∠B180°  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,O是平面直角坐标系的原点.在四边形OABC中,ABOC,BCx轴于C,A(1,1),B(3,1),动点PO点出发,沿x轴正方向以2个单位/秒的速度运动.设P点运动的时间为t秒(0t2).

(1)求经过O、A、B三点的抛物线的解析式;

(2)过PPDOAD,以点P为圆心,PD为半径作⊙P,P在点P的右侧与x轴交于点Q.

①则P点的坐标为_____,Q点的坐标为_____;(用含t的代数式表示)

②试求t为何值时,⊙P与四边形OABC的两边同时相切;

③设△OPD与四边形OABC重叠的面积为S,请直接写出St的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,∠AOB是平角,∠AOC=30°,BOD=60°,OMON分别是∠AOCBOD的平分线,∠MON等于________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:射线OPAE

1)如图1,∠AOP的角平分线交射线AE与点B,若∠BOP=58°,求∠A的度数.

2)如图2,若点C在射线AE上,OB平分∠AOCAE于点BOD平分∠COPAE于点D,∠ADO=39°,求∠ABO﹣∠AOB的度数.

3)如图3,若∠A=m,依次作出∠AOP的角平分线OB,∠BOP的角平分线OB1,∠B1OP的角平分线OB2,∠Bn1OP的角平分线OBn,其中点BB1B2Bn1Bn都在射线AE上,试求∠ABnO的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,,点MAC的中点,以AB为直径作分别交于点

求证:

填空:

,当时,______;

连接,当的度数为______时,四边形ODME是菱形.

查看答案和解析>>

同步练习册答案