精英家教网 > 初中数学 > 题目详情

【题目】如图,AD、BC是⊙O的两条互相垂直的直径,点P从点O出发,沿O→C→D→O的路线匀速运动.设∠APB=y(单位:度),那么y与点P运动的时间x(单位:秒)的关系图是( )

A.
B.
C.
D.

【答案】B
【解析】解:(1)当点P沿O→C运动时,
当点P在点O的位置时,y=90°,
当点P在点C的位置时,
∵OA=OC,
∴y=45°,
∴y由90°逐渐减小到45°;(2)当点P沿C→D运动时,
根据圆周角定理,可得
y≡90°÷2=45°;(3)当点P沿D→O运动时,
当点P在点D的位置时,y=45°,
当点P在点0的位置时,y=90°,
∴y由45°逐渐增加到90°.
故选:B.
根据图示,分三种情况:(1)当点P沿O→C运动时;(2)当点P沿C→D运动时;(3)当点P沿D→O运动时;分别判断出y的取值情况,进而判断出y与点P运动的时间x(单位:秒)的关系图是哪个即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】按照有关规定:距高铁轨道 200米以内的区域内不宜临路新建学校、医院、敬老院和集中住宅区等噪声敏感建筑物.
如图是一个小区平面示意图,矩形ABEF为一新建小区,直线MN为高铁轨道,C、D是直线MN上的两点,点C、A、B在一直线上,且DA⊥CA,∠ACD=30°.小王看中了①号楼A单元的一套住宅,与售楼人员的对话如下:

(1)小王心中一算,发现售楼人员的话不可信,请你用所学的数学知识说明理由;
(2)若一列长度为228米的高铁以252千米/小时的速度通过时,则A单元用户受到影响时间有多长?
(温馨提示: ≈1.4, ≈1.7, ≈6.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB,将△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】模型介绍:古希腊有一个著名的“将军饮马问题”,大致内容如下:古希腊一位将军,每天都要巡查河岸侧的两个军营A、B,他总是先去A营,再到河边饮马,之后再去B营,如图 ①,他时常想,怎么走才能使每天的路程之和最短呢?
大数学家海伦曾用轴对称的方法巧妙的解决了这问题

如图②,作B关于直线l的对称点B′,连接AB′与直线l交于点C,点C就是所求的位置.
请你在下列的阅读、应用的过程中,完成解答.
(1)理由:如图③,在直线L上另取任一点C′,连接AC′,BC′,B′C′,
∵直线l是点B,B′的对称轴,点C,C′在l上
∴CB= , C′B=
∴AC+CB=AC+CB′=
在△AC′B′中,∵AB′<AC′+C′B′,∴AC+CB<AC′+C′B′即AC+CB最小
归纳小结:
本问题实际是利用轴对称变换的思想,把A、B在直线的同侧问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即转化为“三角形两边之和大于第三边”的问题加以解决(其中C为AB′与l的交点,即A、C、B′三点共线).
本问题可拓展为“求定直线上一动点与直线外两定点的距离和的最小值”问题的数学模型.
(2)模型应用
如图 ④,正方形ABCD的边长为2,E为AB的中点,F是AC上一动点.
求EF+FB的最小值
分析:解决这个问题,可以借助上面的模型,由正方形的对称性可知,B与D关于直线AC对称,连结ED交AC于F,则EF+FB的最小值就是线段的长度,EF+FB的最小值是

如图⑤,已知⊙O的直径CD为4,∠AOD的度数为60°,点B是 的中点,在直径CD上找一点P,使BP+AP的值最小,则BP+AP的最小值是
如图⑥,一次函数y=﹣2x+4的图象与x,y轴分别交于A,B两点,点O为坐标原点,点C与点D分别为线段OA,AB的中点,点P为OB上一动点,求:PC+PD的最小值,并写出取得最小值时P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我县实施新课程改革后,学生的自主字习、合作交流能力有很大提高.张老师为了了解所教班级学生自主学习、合作交流的具体情况,对本班部分学生进行了为期半个月的跟踪调査,并将调査结果分成四类,A:特别好;B:好;C:一般;D:较差;并将调査结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

(1)本次调查中,张老师一共调査了名同学,其中C类女生有名,D类男生有名;
(2)将上面的条形统计图补充完整;
(3)为了共同进步,张老师想从被调査的A类和D类学生中分别选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校积极开展“阳光体育”活动,共开设了跳绳、足球、篮球、跑步四种运动项目,为了解学生最喜爱哪一种项目,随机抽取了部分学生进行调查,并绘制了如下的条形统计图和扇形统计图(部分信息未给出).

(1)求本次被调查的学生人数;
(2)补全条形统计图;
(3)该校共有1200名学生,请估计全校最喜爱篮球的人数比最喜爱足球的人数多多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列四个命题:
①对角线互相垂直的平行四边形是正方形;
,则m≥1;
③过弦的中点的直线必经过圆心;
④圆的切线垂直于经过切点的半径;
⑤圆的两条平行弦所夹的弧相等;
其中正确的命题有( )个.
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.

(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点E,F分别是等边△ABC中AC,AB边上的中点,以AE为边向外作等边△ADE.

(1)求证:四边形AFED是菱形;
(2)连接DC,若BC=10,求四边形ABCD的面积.

查看答案和解析>>

同步练习册答案