【题目】如图所示,点O是等边三角形ABC内一点,∠AOB=100°,∠BOC=α,D是△ABC外一点,且△ADC≌△BOC,连接OD.
(1)求证:△COD是等边三角形;
(2)当α=150°时,判断△AOD的形状,并说明理由。
(3)探究:当α=_____度时,△AOD是等腰三角形。
【答案】(1)见解析 (2)直角三角形,见解析 (3)100或130或160
【解析】
(1)根据全等三角形的性质得到∠OCB=∠DCA,CO=CD,证明∠DCA+∠ACO=60°,根据等边三角形的判定定理证明;
(2)根据全等三角形的性质得到∠ADC=∠BOC=150°,结合图形计算即可;
(3)分AD=AO、DA=DO、OD=AO三种情况,根据等腰三角形的性质,三角形内角和定理计算.
(1)证明:∵△ADC≌△BOC,
∴∠OCB=∠DCA,CO=CD,
∵△ABC是等边三角形,
∴∠ACB=60°,即∠OCB+∠ACO=60°,
∴∠DCA+∠ACO=60°,又CO=CD,
∴△COD是等边三角形;
(2)解:∵△ADC≌△BOC,
∴∠ADC=∠BOC=150°,
∵△COD是等边三角形,
∴∠ODC=60°,
∴∠ADO=∠ADC∠ODC=90°,
∠AOD=360°100°150°60°=50°,
∴∠OAD=40°,
△AOD是直角三角形;
(3)解:当AD=AO时,设∠AOD=∠ADO=x,
则∠ADC=∠ADO+∠ODC=x+60°,
∴∠BOC=x+60°,
则100°+x+60°+x+60°=360°,
解得,x=70°,
则α=60°+70°=130°,
当DA=DO时,设∠AOD=∠DAO=x,
则∠ADO=180°2x,
∴∠ADC=∠ADO+∠ODC=180°2x+60°,
∴∠BOC=240°2x,
则100°+240°2x+x+60°=360°,
解得,x=40°,
则α=240°2x=160°,
当OD=AO时,设∠OAD=∠ADO=x,
则∠ADC=∠ADO+∠ODC=x+60°,
∴∠BOC=x+60°,
则100°+x+60°+180°2x+60°=360°,
解得,x=40°,
则α=60°+40°=100°,
综上所述,当α为100°或130°或160°时,△AOD是等腰三角形.
科目:初中数学 来源: 题型:
【题目】如图,在中,和的平分线相交于点,过点作交于,交于,过点作于下列结论:①;②点到各边的距离相等;③;④设,,则;⑤.其中正确的结论是.__________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数(k≠0)与一次函数y=ax+b(a≠0)相交于点A(1,3),B(c,﹣1).
(1)求反比例函数与一次函数的解析式;
(2)在反比例函数图象上存在点C,使△AOC为等腰三角形,这样的点有几个,请直接写出一个以AC为底边的等腰三角形顶点C的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】快、慢两车分别从相距480千米路程的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留1小时,然后以原速度继续向甲地行驶,到达甲地后停止行驶;快车到达乙地后,立即按原路原速返回甲地,(快车掉头的时间忽略不计),快、慢两车距乙地的路程y(千米)与所用时间x(小时)之间的函数图象如图.快车到达甲地时,慢车距离甲地__米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠C=90°,AC=BC,AD=16cm,BE=12cm,点P是斜边AB的中点.有一把直角尺MPN,将它的顶点与点P重合,将此直角尺绕点P旋转,与两条直角边AC和CB分别交于点D和点E.则线段PD和PE的数量关系为_____,线段DE=_____cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2经过点A(﹣2,﹣8).
(1)求此抛物线的函数解析式;
(2)写出这个二次函数图象的顶点坐标、对称轴;
(3)判断点B(﹣1,﹣4)是否在此抛物线上;
(4)求出此抛物线上纵坐标为﹣6的点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】解决下列两个问题:
(1)如图1,在△ABC中,AB=3,AC=4,BC=5.EF垂直且平分BC.点P在直线EF上,直接写出PA+PB的最小值,并在图中标出当PA+PB取最小值时点P的位置;
解:PA+PB的最小值为 .
(2)如图2.点M、N在∠BAC的内部,请在∠BAC的内部求作一点P,使得点P到∠BAC两边的距离相等,且使PM=PN.(尺规作图,保留作图痕迹,无需证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,它的对称轴与x轴交于点F,过点C作CE∥x轴交抛物线于另一点E,连结EF,AC.
(1)求该抛物线的表达式及点E的坐标;
(2)在线段EF上任取点P,连结OP,作点F关于直线OP的对称点G,连结EG和PG,当点G恰好落到y轴上时,求△EGP的面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com