精英家教网 > 初中数学 > 题目详情
12.函数y=$\frac{2x}{3x+9}$中,自变量x的取值范围是x≠-3.

分析 根据分母不等于0列式计算即可得解.

解答 解:由题意得,3x+9≠0,
解得x≠-3.
故答案为:x≠-3.

点评 本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数非负.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

2.如图,平行四边形ABCD中,AE⊥BC,CF⊥AD,垂足分别是E、F.求证:△ABE≌△CDF.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.已知E是正方形ABCD的对角线AC上一点,AE=AD,过点E作AC的垂线,交边CD于点F,那么∠FAD=22.5度.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.某班的9名同学的体重分别是(单位:千克):61,59,70,59,65,67,59,63,57,这组数据的众数和中位数分别是59,61.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,一次函数y=kx-1的图象与x轴交于点A,与反比例函数y=$\frac{3}{x}$(x>0)的图象交于点B,BC垂直x轴于点C.若△ABC的面积为1,则k的值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

17.如图,平面直角坐标系中,抛物线y=-$\frac{1}{3}$(x+h)2+k的对称轴为x=-1,与y轴交于点D(0,$\frac{13}{3}$).
(1)求h和k的值;
(2)点P为第二象限对称轴左侧抛物线上一点,过P作x轴垂线,垂足为B,点B关于抛物线对称轴的对称点为A,在对称轴上取点C,使∠BPC>90°,连接AC,若∠BAC=$\frac{1}{2}$∠BPC.求证:PB=PC;
(3)在(2)条件下,过点A作AE∥PC交抛物线的对称轴于点E,当CE:AE=13:5时,求P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.解不等式组$\left\{\begin{array}{l}{2x-1>x+1,①}\\{x+8<4x-1,②}\end{array}\right.$请结合题意填空,完成本题的解答.
(Ⅰ)解不等式①,得x>2;
(Ⅱ)解不等式②,得x>3;
(Ⅲ)把不等式①和②的解集在数轴上表示出来;
 
(Ⅳ)原不等式组的解集为x>3.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.不等式2x+1≤3的解集在数轴上表示正确的是(  )
A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.阅读理解:
如图①,如果四边形ABCD满足AB=AD,CB=CD,∠B=∠D=90°,那么我们把这样的四边形叫做“完美筝形”.
将一张如图①所示的“完美筝形”纸片ABCD先折叠成如图②所示形状,再展开得到图③,其中CE,CF为折痕,∠BCE=∠ECF=∠FCD,点B′为点B的对应点,点D′为点D的对应点,连接EB′,FD′相交于点O.
简单应用:
(1)在平行四边形、矩形、菱形、正方形四种图形中,一定为“完美筝形”的是正方形;
(2)当图③中的∠BCD=120°时,∠AEB′=80°;
(3)当图②中的四边形AECF为菱形时,对应图③中的“完美筝形”有5个(包含四边形ABCD).
拓展提升:
当图③中的∠BCD=90°时,连接AB′,请探求∠AB′E的度数,并说明理由.

查看答案和解析>>

同步练习册答案