【题目】如图,在平面直角坐标系中,直线 l 经过点A(2,﹣3),与 x 轴交于点 B,且与直线y=3x-平行.
(1)求直线l的函数解析式及点B的坐标;
(2)如直线l上有一点 M(a,﹣6),过点 M 作 x 轴的垂线,交直线 y=3x-于点N,在线段MN上求一点P,使△PAB是直角三角形,请求出点P的坐标.
【答案】(1)直线l的解析式为y=3x9,B点坐标为(3,0);(2)P1(1,1),P2(1,2),P3(1, ).
【解析】
(1)设直线l的解析式为:y=kx+b,因为直线l与直线y=3x-平行,所以k=3,又直线l经过点A(2,-3),从而求出b的值,即可求出直线l的函数解析式及点B的坐标;
(2)点M(a,-6)在直线l上,所以可先求出a的值,设点P(1,y),求出y的取值范围,再分情况讨论:当AB为斜边时,当PB为斜边时,当PA为斜边时,利用勾股定理建立方程求解即可.
解:(1)设直线l的解析式为y=kx+b(k≠0),
∵直线l平行于y=3x-,
∴k=3,
∵直线l经过点A(2,3),
∴3=3×2+b,b=9,
∴直线l的解析式为y=3x9,
当y=0时,x=3,
∴点B坐标为(3,0);
(2)∵点M(a,6)在直线l上,
∴3a-9=-6
∴a=1,则可设点P(1,y),
当x=1时,=
∴N(1,),
∴y的取值范围是6≤y≤,
∵P(1,y),A(2,-3),B (3,0)
∴,
当AB为斜边时,PA2+PB2=AB2,即,
整理得,解得y1=1,y2=2,
∴P1(1,1),P2(1,2),
当PB为斜边时,PA2+AB2=PB2,,
解得,
∴P3(1, ),
当PA为斜边时,PB2+AB2=PA2,即,
解得y=,
∵6≤y≤,故y=不符合题意,舍去.
∴综上所述,点P的坐标为P1(1,1),P2(1,2),P3(1, ).
科目:初中数学 来源: 题型:
【题目】某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的市场调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出1辆.该4S店要想平均每周的销售利润为90万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形OABC的顶点O与平面直角坐标系的原点重合,点A,C分别在x轴,y轴上,点B的坐标为(-5,4),点D为边BC上一点,连接OD,若线段OD绕点D顺时针旋转90°后,点O恰好落在AB边上的点E处,则点E的坐标为( )
A. (-5,3) B. (-5,4) C. (-5,) D. (-5,2)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C在x轴的负半轴,抛物线y=﹣(x﹣2)2+k过点A.
(1)求k的值;
(2)若把抛物线y=﹣(x﹣2)2+k沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点C.试判断点B是否落在平移后的抛物线上,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.
(2) 如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=,其中为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.
(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:①韦达定理:设一元二次方程ax2+bx+c=0(且a≠0)中,两根有如下关系:,.
②已知p2﹣p﹣1=0,1﹣q﹣q2=0,且pq≠1,求 的值.
解:由p2﹣p﹣1=0及1﹣q﹣q2=0,可知p≠0,q≠0.
又∵pq≠1,∴ ;
∴1﹣q﹣q2=0可变形为的特征.
所以p与是方程x2﹣x﹣1=0的两个不相等的实数根.
则p+=1,
∴=1.
根据阅读材料所提供的方法,完成下面的解答.
已知:2m2﹣5m﹣1=0,,且m≠n.求: 的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com