精英家教网 > 初中数学 > 题目详情

【题目】如图,正六边形A1B1C1D1E1F1的边长为2,正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,正六边形A3B3C3D3E3F3的外接圆与正六边形A2B2C2D2E2F2的各边相切,按这样的规律进行下去,A11B11C11D11E11F11的边长为(  )

A. B. C. D.

【答案】A

【解析】分析:连接OE1,OD1,OD2,如图,根据正六边形的性质得∠E1OD1=60°,则E1OD1为等边三角形,再根据切线的性质得OD2E1D1,于是可得OD2=E1D1=×2,利用正六边形的边长等于它的半径得到正六边形A2B2C2D2E2F2的边长=×2,同理可得正六边形A3B3C3D3E3F3的边长=(2×2,依此规律可得正六边形A11B11C11D11E11F11的边长=(10×2,然后化简即可.

详解:连接OE1,OD1,OD2,如图,

∵六边形A1B1C1D1E1F1为正六边形,

∴∠E1OD1=60°,

∴△E1OD1为等边三角形,

∵正六边形A2B2C2D2E2F2的外接圆与正六边形A1B1C1D1E1F1的各边相切,

OD2E1D1

OD2=E1D1=×2,

∴正六边形A2B2C2D2E2F2的边长=×2,

同理可得正六边形A3B3C3D3E3F3的边长=(2×2,

则正六边形A11B11C11D11E11F11的边长=(10×2=

故选A.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图抛物线y=ax2+bx(a≠0)的图象过原点O和点A(1 )且与x轴交于点BAOB的面积为

(1)求抛物线的解析式

(2)若抛物线的对称轴上存在一点M使△AOM的周长最小M点的坐标

(3)Fx轴上一动点Fx轴的垂线交直线AB于点E交抛物线于点PPE=直接写出点E的坐标(写出符合条件的两个点即可)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,∠BAC=90°,以AB为直径作⊙OBC于点DEAC的中点,连接DE并延长交BA的延长线于点F

1)求证:DE是⊙O的切线;

2)若∠F=30°O的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应环保组织提出的“低碳生活”的号召,李明决定不开汽车而改骑自行车上班.有一天,李明骑自行车从家里到工厂上班,途中因自行车发生故障,修车耽误了一段时间,车修好后继续骑行,直至到达工厂(假设在骑自行车过程中匀速行驶).李明离家的距离(米)与离家时间(分钟)的关系表示如下图:

(1)李明从家出发到出现故障时的速度为 米/分钟;

(2)李明修车用时 分钟;

(3)求线段BC所对应的函数关系式(不要求写出自变量的取值范围).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了了解学生参加体育活动的情况,学校对学生进行随机抽样调查,其中一个问题是你平均每天参加体育活动的时间是多少,共有4个选项:A1.5小时以上;B11.5小时;C0.51小时;D0.5小时以下.图12是根据调查结果绘制的两幅不完整的统计图,请你根据统计图提供的信息,解答以下问题:

1)本次一共调查了多少名学生?

2)在图1中将选项B的部分补充完整;

3)若该校有3000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在1小时以下.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC的角平分线CDBE相交于FA90°EGBC,且CGEGG,下列结论:①∠CEG2DCB②∠DFBCGE③∠ADCGCDCA平分∠BCG.其中正确的结论是_______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,反比例函数y=的图象上,点A是该图象第一象限分支上的动点,连结AO并延长交另一支于点B,以AB为斜边作等腰直角△ABC,顶点C在第四象限,ACx轴交于点P,连结BP,在点A运动过程中,当BP平分∠ABC时,点A的坐标为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,将坐标原点O沿x轴向左平移2个单位长度得到点A,过点A作y轴的平行线交反比例函数y=的图象于点B,AB=

(1)求反比例函数的解析式;

(2)若P(x1,y1)、Q(x2,y2)是该反比例函数图象上的两点,且x1<x2时,y1>y2,指出点P、Q各位于哪个象限?并简要说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在矩形ABCD中,AB=6cm,BC=8cm,E、F分别是AB、BD的中点,连接EF,点P从点E出发,沿EF方向匀速运动,速度为1cm/s,同时,点Q从点D出发,沿DB方向匀速运动,速度为2cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s,解答下列问题:

(1)求证:△BEF∽△DCB;

(2)当点Q在线段DF上运动时,若△PQF的面积为0.6cm2,求t的值;

(3)如图2过点QQG⊥AB,垂足为G,当t为何值时,四边形EPQG为矩形,请说明理由;

(4)当t为何值时,△PQF为等腰三角形?试说明理由.

查看答案和解析>>

同步练习册答案