【题目】如图,AB为⊙O的直径,AC与⊙O交于点F,弦AD平分∠BAC,DE⊥AC,垂足为E点.
(1)求证:DE是⊙O的切线;
(2)若⊙O的半径为2,∠BAC=60°,求图中阴影部分的面积.
【答案】(1)见解析;(2)S阴影=π.
【解析】
(1)连接OD,先证明∠OAD=∠CAD,∠ODA=∠CAD,从而证明∠ODE=90°,即可证明DE是⊙O的切线;
(2)连接OF,根据∠BAC=60°和角度转换证明OD∥OC,即可证明S△AFD=S△AFO,把图中阴影部分面积转换得到扇形OAF的面积,再根据扇形面积公式即可求出.
解:(1)连结OD,
∵AD平分∠BAC,
∴∠OAD=∠CAD,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠ODA=∠CAD,
∴OD∥AC,
∵DE⊥AC,即∠AED=90°,
∴∠ODE=90°,即DE⊥OD,
∴DE是⊙O的切线;
(2)连接OF,
∵OD∥AC,
∴S△AFD=S△AFO,
∵∠BAC=60°,OA=OF,
∴△OAF为等边三角形,
∴∠AOF=60°,
∴S阴影=S扇形OAF==π.
科目:初中数学 来源: 题型:
【题目】解下列方程:
(1)(y+2)2-(3y-1)2=0;
(2)5(x-3)2=x2-9;
(3)t2-t+=0.
(4)2x2+7x+3=0(配方法).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知菱形ABCD,对角线AC、BD相交于点O,AC=6,BD=8.点E是AB边上一点,求作矩形EFGH,使得点F、G、H分别落在边BC、CD、AD上.设 AE=m.
(1)如图①,当m=1时,利用直尺和圆规,作出所有满足条件的矩形EFGH;(保留作图痕迹,不写作法)
(2)写出矩形EFGH的个数及对应的m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如果三角形有一边上的中线恰好等于这边的长,那么称这个三角形为“匀称三角形”,这条中线为“匀称中线”.
(1)如图①,在Rt△ABC中,∠C=90°,AC>BC,若Rt△ABC是“匀称三角形”.
①请判断“匀称中线”是哪条边上的中线,
②求BC:AC:AB的值.
(2)如图②,△ABC是⊙O的内接三角形,AB>AC,∠BAC=45°,S△ABC=2,将△ABC绕点A逆时针旋转45°得到△ADE,点B的对应点为D,AD与⊙O交于点M,若△ACD是“匀称三角形”,求CD的长,并判断CM是否为△ACD的“匀称中线”.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,射线AN上有一点B,AB=5,tan∠MAN=,点C从点A出发以每秒3个单位长度的速度沿射线AN运动,过点C作CD⊥AN交射线AM于点D,在射线CD上取点F,使得CF=CB,连结AF.设点C的运动时间是t(秒)(t>0).
(1)当点C在点B右侧时,求AD、DF的长.(用含t的代数式表示)
(2)连结BD,设△BCD的面积为S平方单位,求S与t之间的函数关系式.
(3)当△AFD是轴对称图形时,直接写出t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-x2+2x+m+1交x轴于点A(a,0)和B(b,0),交y轴于点C,抛物线的顶点为D,下列四个判断:①当x>0时,y>0;②若a=-1,则b=3;③抛物线上有两点P(x1,y1)和Q(x2,y2),若x1<1<x2,且x1+x2>2,则y1>y2;④点C关于抛物线对称轴的对称点为E,点G、F分别在x轴和y轴上,当m=2时,四边形EDGF周长的最小值为,其中,判断正确的序号是( )
A.①②B.②③C.①③D.②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,抛物线y=ax2﹣4ax﹣6(a>0)与x轴交于A,B两点,且OB=3OA,与y轴交于点C,抛物线的顶点为D,对称轴与x轴交于点E.
(1)求该抛物线的解析式,并直接写出顶点D的坐标;
(2)如图2,直线y=+n与抛物线交于G,H两点,直线AH,AG分别交y轴负半轴于M,N两点,求OM+ON的值;
(3)如图1,点P在线段DE上,作等腰△BPQ,使得PB=PQ,且点Q落在直线CD上,若满足条件的点Q有且只有一个,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两台机床同时加工直径为的同种规格零件,为了检查两台机床加工零件的稳定性,质检员从两台机床的产品中各抽取件进行检测,结果如下(单位:):
甲 | |||||
乙 |
(1)分别求出这两台机床所加工零件直径的平均数和方差;
(2)根据所学的统计知识,你认为哪一台机床生产零件的稳定性更好一些,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为4,动点M、N同时从A点出发,点M沿AB以每秒1个单位长度的速度向中点B运动,点N沿折现ADC以每秒2个单位长度的速度向终点C运动,设运动时间为t秒,则△CMN的面积为S关于t函数的图象大致是( )
A. B.
C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com