【题目】某出租车司机从公司出发,在东西方向的人民路上连续接送5批客人,行驶路程记录如下(规定向东为正,向西为负,单位:km):
(1)接送完第5批客人后,该驾驶员在公司什么方向,距离公司多少千米?
(2)若该出租车每千米耗油0.2升,那么在这过程中共耗油多少升?
(3)若该出租车的计价标准为:行驶路程不超过3km收费10元,超过3km的部分按每千米加1.8元收费,在这过程中该驾驶员共收到车费多少元?
科目:初中数学 来源: 题型:
【题目】已知长方形纸片,点在边上,点在边上,将沿翻折到,射线与交于点.点在边上,将沿翻折到,射线与交于点.
(1)如图1,若点与点重合,直接写出以为顶点的两对相等的角,并求的度数;
(2)如图2,若点在点的右侧,且,,求与的度数;
(3)若点在点的左侧,且,求的度数(用含的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明在解决问题:已知a=,求2a2﹣8a+1的值,他是这样分析与解的:
∵a===2﹣
∴a﹣2=﹣
∴(a﹣2)2=3,a2﹣4a+4=3
∴a2﹣4a=﹣1
∴2a2﹣8a+1=2(a2﹣4a)+1=2×(﹣1)+1=﹣1
请你根据小明的分析过程,解决如下问题:
(1)化简+++…+
(2)若a=,求4a2﹣8a+1的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在△ABC中,AB=AC,∠BAC=120°,AC的垂直平分线EF交AC于点E,交BC于点F.试探索BF与CF的数量关系,写出你的结论并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】直线与直线垂直相交于点,点在射线上运动(点不与点重合),点在射线上运动(点不与点重合).
(1)如图1,已知、分别是和的角平分线,
①当时,求的度数;
②点在运动的过程中,的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出的大小;
(2)如图2,延长至,已知、的角平分线与的角平分线所在的直线分别相交于、,在中,如果有一个角是另一个角的3倍,请直接写出的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】A、B、C三瓶不同浓度的酒精,A瓶内有酒精2kg,浓度x%,B瓶有酒精3kg,浓度y%,C瓶有酒精5kg,浓度z%,从A瓶中倒出10%,B瓶中倒出20%,C瓶中倒出24%,混合后测得浓度33.5%,将混合后的溶液倒回瓶中,使它们恢复原来的质量,再从A瓶倒出30%,B瓶倒出30%,C瓶倒出30%,混合后测得浓度为31.5%,测量发现,,,且x、y、z均为整数,则把起初A、B两瓶酒精全部混合后的浓度为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读材料:若a,b都是非负实数,则a+b≥2.当且仅当a=b时,“=”成立.
证明:∵()2≥0,∴a-2+b≥0.
∴a+b≥2.当且仅当a=b时,“=”成立.
举例应用:已知x>0,求函数y=x的最小值.
解:y=x=2.当且仅当x=,即x=时,“=”成立.
∴当x=时,函数取得最小值,y最小=2.
问题解决:
(1)已知x>0,求函数y=的最小值;
(2)求代数式(m>-1)的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,四边形OABC的顶点A在x轴的正半轴上,OA=4,OC=2,点D、E、F、G分别为边OA、AB、BC、CO的中点,连结DE、EF、FG、GD.
(1)若点C在y轴的正半轴上,当点B的坐标为(2,4)时,判断四边形DEFG的形状,并说明理由.
(2)若点C在第二象限运动,且四边形DEFG为菱形时,求点四边形OABC对角线OB长度的取值范围.
(3)若在点C的运动过程中,四边形DEFG始终为正方形,当点C从X轴负半轴经过Y轴正半轴,运动至X轴正半轴时,直接写出点B的运动路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】鸡兔同笼问题是我国古代著名趣题之一,大约在 1500 年前,《孙子算经》中就记载了这个有趣的问题.书中是这样叙述的:“今有雉兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”这四句话的意思是:有若干只鸡、兔同在一个笼子里,从上上面数,有 35 个头;从下面数,有 94 只脚 .求笼中各有几只鸡和兔?经计算可得( )
A. 鸡 20 只,兔 15 只 B. 鸡 12 只,兔 23 只
C. 鸡 15 只,兔 20 只 D. 鸡 23 只,兔 12 只
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com