精英家教网 > 初中数学 > 题目详情
如图,边长为1的正方形ABCD绕点A向逆时针方向旋转30°(图中∠BAE=30°),旋转后的正方形AEFG与原正方形ABCD公共部分(即四边形AEHD)的面积为
3
3
3
3
分析:连接AH,先根据旋转的性质,利用HL证明△AHE≌△AHD,则所求四边形AEHD的面积等于△AHD面积的2倍,然后在直角△AHD中根据锐角三角函数求出HD的长,进而求出面积.
解答:解:连接AH.
根据旋转的性质,得∠BAE=30°,则∠DAE=60°.
在Rt△AHE和Rt△AHD中,
AH=AH
AE=AD

∴Rt△AHE≌Rt△AHD,
∴∠EAH=∠DAH=30°,
又∵AD=1,
∴HD=AD•tan∠DAH=
3
3

∴公共部分的面积=2S△AHD=2×
1
2
×1×
3
3
=
3
3

故答案为
3
3
点评:本题主要考查了正方形的性质,旋转的性质,全等三角形的性质与判定,三角形的面积.利用HL证明出△AHE≌△AHD,从而将所求四边形AEHD的面积转化为△AHD面积的2倍是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,边长为
π2
的正△ABC,点A与原点O重合,若将该正三角形沿数轴正方向翻滚一周,点A恰好与数轴上的点A′重合,则点A′对应的实数是
 

精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图将边长为1的正方形OAPB沿轴正方向连续翻转2006次,点P依次落在点,……的位置,则的横坐标=_________.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年新人教版九年级(上)期中数学试卷(7)(解析版) 题型:解答题

如图,边长为6的正方OABC的顶点O在坐标原点处,点A、C分别在x轴、y轴的正半轴上,点E是OA边上的点(不与点A重合),EF⊥CE,且与正方形外角平分线AC交于点P.
(1)当点E坐标为(3,0)时,证明CE=EP;
(2)如果将上述条件“点E坐标为(3,0)”改为“点E坐标为(t,0)”,结论CE=EP是否仍然成立,请说明理由;
(3)在y轴上是否存在点M,使得四边形BMEP是平行四边形?若存在,用t表示点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案