【题目】如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.
(1)求证:DE=DF,DE⊥DF;
(2)连接EF,若AC=2,求EF的长.
【答案】(1)详见解析;(2)EF=
【解析】
(1)由已知条件不难证明△ADC≌△BDG,可得BG=AC,∠CAD=∠GBD,由E,F分别是BG,AC的中点可得ED=BG,DF=AC,进而得出ED=DF=BE=EG=AF=CF,所以△BED≌△AFD,所以∠BDE=∠ADF,所以∠ADF+∠EDA=90°即DE⊥DF;(2)由AC的长度可得出DE、DF的长度,由勾股定理求出EF的长度即可.
(1)∵AD⊥BC,
∴∠ADC=∠BDG=90°,
∵在△ADC与△BDG中,
,
∴△ADC≌△BDG,
∴BG=AC,∠CAD=∠GBD,
∵AD⊥BC,E,F分别是BG,AC的中点,
∴BE=EG,AF=CF,ED=BG,DF=AC,
∴ED=DF=BE=EG=AF=CF,
∵在△BED与△AFD中,
,
∴△BED≌△AFD,
∴∠BDE=∠ADF,
∵∠BDE+∠EDA=90°,
∴∠ADF+∠EDA=90°,
∴DE⊥DF;
(2)连接EF,由(1)得△DEF为等腰直角三角形,
∵AC=2,
∴DE=DF=1,
∴EF==.
科目:初中数学 来源: 题型:
【题目】小丽购买学习用品的收据如表,因污损导致部分数据无法识别,根据下表,解决下列问题:
(1)小丽买了自动铅笔、记号笔各几支?
(2)若小丽再次购买软皮笔记本和自动铅笔两种文具,共花费15元,则有哪几种不同的购买方案?
商品名 | 单价(元) | 数量(个) | 金额(元) |
签字笔 | 3 | 2 | 6 |
自动铅笔 | 1.5 | ● | ● |
记号笔 | 4 | ● | ● |
软皮笔记本 | ● | 2 | 9 |
圆规 | 3.5 | 1 | ● |
合计 | 8 | 28 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图,点M、N把线段AB分割成AM、MN、NB,若以AM、MN、NB为边的三角形是一个直角三角形,则称点M、N是线段AB的勾股分割点.
(1)已知M、N把线段AB分割成AM、MN、NB,若AM=1.5,MN=2.5,BN=2,则点M、N是线段AB的勾股分割点吗?请说明理由.
(2)已知点M、N是线段AB的勾股分割点,且AM为直角边,若AB=24,AM=6,求BN的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点P为圆上一点,点C为AB延长线上一点,PA=PC,∠C=30°.
(1)求证:CP是⊙O的切线.
(2)若⊙O的直径为8,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(操作发现)
(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.
①求∠EAF的度数;
②DE与EF相等吗?请说明理由;
(类比探究)
(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.
①∠EAF= ;
②当AE=1,ED=2时,求DB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,第一个正方形ABCD的位置如图所示,点A的坐标为(2,0),点D的坐标为(0,4),延长CB交x轴于点A1,作第二个正方形A1B1C1C;延长C1B1交x轴于点A2,作第三个正方形A2B2C2C1…按这样的规律进行下去,第2018个正方形的面积为( )
A. 20×()2017 B. 20×()2018 C. 20×()4036 D. 20×()4034
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上):
①把△ABC沿BA方向平移,请在网格中画出当点A移动到点A1时的△A1B1C1;
②把△A1B1C1绕点A1按逆时针方向旋转90°后得到△A2B2C2 , 如果网格中小正方形的边长为1,求点B1旋转到B2的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了贯彻落实健康第一的指导思想,促进学生全面发展,国家每年都要对中学生进行一次体能测试,测试结果分“优秀”、“良好”、“及格”、“不及格”四个等级,某学校从七年级学生中随机抽取部分学生的体能测试结果进行分析,并根据收集的数据绘制了两幅不完整的统计图,请根据这两幅统计图中的信息回答下列问题
(1)本次抽样调查共抽取多少名学生?
(2)补全条形统计图.
(3)在扇形统计图中,求测试结果为“良好”等级所对应圆心角的度数.
(4)若该学校七年级共有600名学生,请你估计该学校七年级学生中测试结果为“不及格”等级的学生有多少名?
(5)请你对“不及格”等级的同学提一个友善的建议(一句话即可).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com