精英家教网 > 初中数学 > 题目详情
9.计算
(1)$\frac{1}{2}\sqrt{8}-\sqrt{18}-\sqrt{2}$;
(2)$(\frac{1}{3}\sqrt{27}-\sqrt{24}-3\sqrt{\frac{2}{3}})•\sqrt{12}$.

分析 (1)先把各二次根式化为最简二次根式,然后合并即可;
(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的乘法运算.

解答 解:(1)原式=$\sqrt{2}$-3$\sqrt{2}$-$\sqrt{2}$
=-3$\sqrt{2}$;
(2)原式=(3$\sqrt{3}$-2$\sqrt{6}$-$\sqrt{6}$)•2$\sqrt{3}$
=(3$\sqrt{3}$-3$\sqrt{6}$)•2$\sqrt{3}$
=18-18$\sqrt{2}$.

点评 本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

19.在下列各数:3.14159,0.10110101110…,π,$\root{3}{-27}$中,无理数的个数有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

20.点P(m+5,m+1)在直角坐标系的y轴上,则点P的坐标为(0,-4).

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-1,与x轴的一个交点A在点(-3,0)和(-2,0)之间,其部分图象如图所示,则下列结论:
①4ac-b2<0;
②若点(x1,y1)在抛物线上,且x1≠-1,则有a-ax12>bx1+b;
③a+b+c<0;
④点M(x1,y1)、N(x2,y2)在抛物线上,若x1<x2,则y1≤y2
其中正确结论的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.先化简,再求值:$\frac{{a}^{2}+2a}{{a}^{2}+2a+1}$$÷(1-\frac{1}{a+1})$,其中a=tan60°-tan45°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.设实数a,b,c满足:abc≠0且14(a2+b2+c2)=(a+2b+3c)2,求$\frac{{a}^{2}+{2b}^{2}+{3c}^{2}}{ab+ac+bc}$的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.甲、乙两车从A地出发沿同一路线驶向B地,甲车先出发匀速驶向B地.40分钟后,乙车出发,匀速行驶一段时间后,在途中的货站装货耗时半小时,由于满载货物,为了行驶安全,速度减少了50千米/时,结果与甲车同时到达B地,甲乙两车距A地的路程y(千米)与乙车行驶时间x(时)之间的函数图象如图所示,下列说法:
①a=4.5;
②甲的速度是60千米/时;
③乙出发80分钟追上甲;
④乙刚到达货站时,甲距B地180千米;
其中正确的有(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.在1,-2,0,$\frac{3}{2}$这四个数中,最大的数是(  )
A.1B.0C.$\frac{3}{2}$D.-2

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

19.下列四个实数中,绝对值最小的数是(  )
A.-5B.$-\sqrt{2}$C.1D.π

查看答案和解析>>

同步练习册答案