【题目】如图,直线y=x+b分别交x轴、y轴于点A、C,点P是直线AC与双曲线y=在第一象限内的交点,PB⊥x轴,垂足为点B,且OB=2,PB=4.
(1)求反比例函数的解析式;
(2)求△APB的面积;
(3)求在第一象限内,当x取何值时一次函数的值小于反比例函数的值?
【答案】(1);(2)16;(3)0<x<2.
【解析】
(1)由OB,PB的长,及P在第一象限,确定出P的坐标,由P在反比例函数图象上,将P的坐标代入反比例解析式中,即可求出k的值;
(2)根据待定系数法求得直线AC的解析式,令y=0求出对应x的值,即为A的横坐标,确定出A的坐标,即可求得AB,然后根据三角形的面积公式求解即可;
(3)由一次函数与反比例函数的交点P的横坐标为2,根据图象找出一次函数在反比例函数下方时x的范围即可.
(1)∵OB=2,PB=4,且P在第一象限,
∴P(2,4),
由P在反比例函数y=上,
故将x=2,y=4代入反比例函数解析式得:4=,即k=8,
所以反比例函数解析式为:;
(2)∵P(2,4)在直线y=x+b上,
∴4=×2+b,解得b=3,
∴直线y=x+3,
令y=0,解得:x=﹣6;
∴A(﹣6,0),
∴OA=6,
∴AB=8,
∴S△APB=ABPB=×8×4=16;
(3)由图象及P的横坐标为2,可知:
在第一象限内,一次函数的值小于反比例函数的值时x的范围为0<x<2.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,过点A(2,0)的直线l与y轴交于点B,tan∠OAB=,直线l上的点P位于y轴左侧,且到y轴的距离为1.
(1)求直线l的表达式;
(2)若反比例函数的图象经过点P,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC是平行四边形,对角线OB在y轴正半轴上,位于第一象限的点A和第二象限的点C分别在双曲线y1= 和y2= 的一支上,分别过点A、C作x轴的垂线,垂足分别为M和N,则有以下的结论:① ②阴影部分面积是(k1﹣k2)③当∠AOC=90°时,|k1|=|k2|;④若四边形OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】感知:如图①,∠C=∠ABD=∠E=90°,可知△ACB∽△BED.(不要求证明)
拓展:如图②,∠C=∠ABD=∠E.求证:△ACB∽△BED.
应用:如图③,∠C=∠ABD=∠E=60°,AC=4,BC=1,则△ABD与△BDE的面积比为
.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在数轴上点A表示数20,点C表示数30,我们把数轴上两点之间的距离用表示两点的大写字母一起标记.
比如,点A与点B之间的距离记作AB,点B与点C之间的距离记作BC…
(1)点A与点C之间的距离记作AC,则AC的长为________;若数轴上有一点D满足CD=AD,则D点表示的数为___________;
(2)动点B从数1对应的点开始向右运动,速度为每秒1个单位长度,同时点A、C在数轴上运动,点A、C的速度分别为每秒2个单位长度,每秒3个单位长度,运动时间为t秒.
①若点A向右运动,点C向左运动,AB=BC,求t的值;
②若点A向左运动,点C向右运动,2ABm×BC的值不随时间t的变化而改变,则2ABm×BC的值为_____________(直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图在正方形ABCD中,点M为BC边上一点,BM=4MC,以M为直角顶点作等腰直角三角形MEF,点E在对角线BD上,点F在正方形外EF交BC于点N,连CF,若BE=2,S△CMF=3,则MN=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.
(1)求足球和篮球的单价各是多少元?
(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com