【题目】已知在平面直角坐标系中,抛物线与x轴相交于点A,B,与y轴相交于点C. 已知A,C两点的坐标分别为A(-4,0), C(0,4).
(1)求抛物线的表达式;
(2)如果点P,Q在抛物线上(P点在对称轴左边),且PQ∥AO,PQ=2AO,求P,Q的坐标;
(3)动点M在直线y=x+4上,且△ABC与△COM相似,求点M的坐标.
【答案】(1);
(2)P点坐标(-5,),Q点坐标(3,);
(3)M点的坐标为(,),(-3,1).
【解析】分析:(1)根据待定系数法,可得函数解析式;
(2)根据平行于x轴的直线与抛物线的交点关于对称轴对称,可得P、Q关于直线x=-1对称,根据PQ的长,可得P点的横坐标,Q点的横坐标,根据自变量与函数值的对应关系,可得答案;
(3)根据两组对边对应成比例且夹角相等的两个三角形相似,可得CM的长,根据等腰直角三角形的性质,可得MH的长,再根据自变量与函数值的对应关系,可得答案.
解:(1)将A、C点坐标代入函数解析式,
得 ,
解得 ,
∴抛物线的表达式为;
(2)PQ=2AO=8,
又PQ∥AO,即P、Q关于对称轴x=﹣1对称,
PQ=8,﹣1﹣4=﹣5,
当x=﹣5时,y=×(-5)2-(-5)+4=,即P(-5,);
﹣1+4=3,即Q(3,);
P点坐标(-5,),Q点坐标(3,);
(3)∠MCO=∠CAB=45°,
①当△MCO∽△CAB时,
,
即,
CM=.
如图1,
过M作MH⊥y轴于H,
MH=CH=CM=,
当x=时,y=+4=,
∴M(,);
②当△OCM∽△CAB时,
,
即,
解得CM=,
如图2,
过M作MH⊥y轴于H,MH=CH=CM=3,
当x=﹣3时,y=﹣3+4=1,
∴M(﹣3,1)
综上所述:M点的坐标为(,),(-3,1).
科目:初中数学 来源: 题型:
【题目】广州火车南站广场计划在广场内种植A,B两种花木共 6600棵,若A花木数量是B花木数量的2倍少600棵.
(1)A,B两种花木的数量分别是多少棵?
(2)如果园林处安排26人同时种植这两种花木,每人每天能种植A花木60棵或B花木40棵,应分别安排多少人种植A花木和B花木,才能确保同时完成各自的任务?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线=(≠0)与轴交于AB两点,与轴交于C点,其对称轴为=1,且A(-1,0)C(0,2).
(1)直接写出该抛物线的解析式;
(2)P是对称轴上一点,△PAC的周长存在最大值还是最小值?请求出取得最值(最大值或最小值)时点P的坐标;
(3)设对称轴与轴交于点H,点D为线段CH上的一动点(不与点CH重合).点P是(2)中所求的点.过点D作DE∥PC交轴于点E.连接PDPE.若CD的长为,△PDE的面积为S,求S与之间的函数关系式,试说明S是否存在最值,若存在,请求出最值,并写出S取得的最值及此时的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在△ABC中,AB=BC,∠ABC=90°,点D、E分别是边AB、BC的中点,点F、G是边AC的三等分点,DF、EG的延长线相交于点H,连接HA、HC.
(1)求证:四边形FBGH是菱形;
(2)求证:四边形ABCH是正方形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】正方形ABCD的轨道上有两个点甲与乙,开始时甲在A处,乙在C处,它们沿着正方形轨道顺时针同时出发,甲的速度为每秒1 cm,乙的速度为每秒5 cm,已知正方形轨道ABCD的边长为2 cm,则乙在第2 020次追上甲时的位置在( )
A.AB上B.BC上
C.CD上D.AD上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某学校要从甲乙两名射击运动员中挑选一人参加全市比赛,在选拔赛中,每人进行了5次射击,甲的成绩(环)为:9.7,10,9.6,9.8,9.9;乙的成绩的平均数为9.8,方差为0.032;
(1)甲的射击成绩的平均数和方差分别是多少?
(2)据估计,如果成绩的平均数达到9.8环就可能夺得金牌,为了夺得金牌,应选谁参加比赛?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点,在数轴上分别表示有理数,,,两点之间的距离表示为,在数轴上,两点之间的距离.已知数轴上,两点表示数,满足,点为数轴上一动点,其对应的数为.
(1),两点之间的距离是.
(2)与之间的距离表示为.
(3)数轴上是否存在点,使点到点,点的距离之和为?若存在,请求出的值;若不存在,说明理由.
(4)现在点,点分别以单位/秒和单位/秒的速度同时向右运动,当点与点之间的距离为个单位长度时,求点所对应的数是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】菱形ABCD中,∠B=60°,点E在边BC上,点F在边CD上.
(1)如图①,若点E是BC的中点,∠AEF=60°,求证:BE=DF;
(2)如图②,若∠EAF=60°,求证:△AEF是等边三角形.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com