已知二次函数y=-x2+2x+3.
(1)写出这个二次函数的开口方向、对称轴、顶点坐标和最大值;
(2)求出这个抛物线与坐标轴的交点坐标.
科目:初中数学 来源: 题型:
定义:P、Q分别是两条线段a和b上任意一点,线段PQ的长度的最小值叫做线段a与线段b的距离.
已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角坐标系中四点.
(1)根据上述定义,当m=2,n=2时,如图1,线段BC与线段OA的距离是 ;当m=5,n=2时,如图2,线段BC与线段OA的距离为 ;
(2)如图3,若点B落在圆心为A,半径为2的圆上,线段BC与线段OA的距离记为d,求d关于m的函数解析式.
(3)当m的值变化时,动线段BC与线段OA的距离始终为2,线段BC的中点为M,
①求出点M随线段BC运动所围成的封闭图形的周长;
②点D的坐标为(0,2),m≥0,n≥0,作MH⊥x轴,垂足为H,是否存在m的值使以A、M、H为顶点的三角形与△AOD相似?若存在,求出m的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,与y轴相交于点C,直线y=kx+n(k≠0)经过B、C两点.已知A(1,0),C(0,3),且BC=5.
(1)求B点坐标;
(2)分别求直线BC和抛物线的解析式(关系式).
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
已知A、B两地相距200千米 ,一辆汽车以每小时60千米的速度从A地匀速驶往B地,到达B地后不再行驶.设汽车行驶的时间为x小时,汽车与B地的距离为y千米.
(1)求y与x的函数关系式,并写出自变量x的取值范围;
(2)当汽车行驶了2小时时,求汽车距B地有多少千米?
查看答案和解析>>
科目:初中数学 来源: 题型:
某楼盘2013年房价为每平方米8100元,经过两年连续降价后,2015年房价为每平方米7800元,设该楼盘这两年房价平均降低率为x,根据题意可列方程为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com