精英家教网 > 初中数学 > 题目详情

【题目】如图,在△ABC 中,∠A90°ABAC,∠ABC 的角平分线交 AC DBD4 ,过点 C CEBD BD 的延长线于 E,则 CE 的长为(

A.B.2 C.3 D.2

【答案】D

【解析】

延长CEBA延长线交于点F,首先证明△BAD≌△CAF,根据全等三角形的性质得出BD=CF,再证明△BEF≌△BCF得出CE=EF,进而可得CE=BD,即可得出答案.

延长CEBA相交于点F

∵∠BAC=90°CEBD

∴∠BAC=DEC

∵∠ADB=CDE

∴∠ABD=DCE

在△BAD和△CAF

∴△BAD≌△CAF

BD=CF

BD平分∠ABCCEDB

∴∠FBE=CBE

在△BEF和△BCE

∴△BEF≌△BCE

CE=CF

DB=2CE

CE=BD=

故答案选择D

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,直线的表达式为:,且轴交于点,与轴交于点,直线的表达式为经过点交于点

1)求直线的函数表达式;

2)直接写出点的坐标________

3)如果点在直线上,满足的面积是面积的2倍,求点的坐标;

4)把向左平移个单位到的位置,当取得最小值时,直接写出的值________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,图中二次函数解析式为y=ax2+bx+c(a≠0)则下列命题中正确的有(填序号).①abc>0;②b2<4ac;③4a﹣2b+c>0;④2a+b>c.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】亮亮和颖颖住在同一幢住宅楼,两人准备用测量影子的方法测算其楼高,但恰逢阴天,于是两人商定改用下面方法:如图,亮亮蹲在地上,颖颖站在亮亮和楼之间,两人适当调整自己的位置,当楼的顶部颖颖的头顶及亮亮的眼睛恰在一条直线上时,两人分别标定自己的位置然后测出两人之间的距离颖颖与楼之间的距离在一条直线上),颖颖的身高亮亮蹲地观测时眼睛到地面的距离你能根据以上测量数据帮助他们求出住宅楼的高度吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线C1:y=x2+bx+c经过原点,与x轴的另一个交点为(2,0),将抛物线C1向右平移m(m>0)个单位得到抛物线C2 , C2交x轴于A,B两点(点A在点B的左边),交y轴于点C.
(1)求抛物线C1的解析式及顶点坐标;
(2)以AC为斜边向上作等腰直角三角形ACD,当点D落在抛物线C2的对称轴上时,求抛物线C2的解析式;
(3)若抛物线C2的对称轴存在点P,使△ PAC为等边三角形,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在平面直角坐标系中,Aa0),Bb3),C40),且满足(a+b2+|ab+6|=0,线段ABy轴于F点.

1)求点AB的坐标.

2)点Dy轴正半轴上一点,若EDAB,且AMDM分别平分∠CAB∠ODE,如图2,求∠AMD的度数.

3)如图3

求点F的坐标;

P为坐标轴上一点,若△ABP的三角形和△ABC的面积相等?若存在,求出P点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将直线y=﹣x沿y轴向下平移后的直线恰好经过点A(2,﹣4),且与y轴交于点B,在x轴上存在一点P使得PA+PB的值最小,则点P的坐标为______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形中,的平分线交于点的平分线交于点,交于点,且

1)求证:四边形是平行四边形;

2)若,求线段的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一个内角为90°,且对角线相等的四边形称为准矩形.

(1)①如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=3,则BD=   

②如图2,直角坐标系中,A(0,3),B(5,0),若整点P使得四边形AOBP是准矩形,则点P的坐标是   ;(整点指横坐标、纵坐标都为整数的点)

(2)如图3,正方形ABCD中,点E、F分别是边AD、AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;

(3)已知,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,当△ADC为等腰三角形时,请直接写出这个准矩形的面积是   

查看答案和解析>>

同步练习册答案