【题目】某商店需要购进甲、乙两种商品共180件其进价和售价如表:(注:获利=售价进价)
(1)若商店计划销售完这批商品后能获利1240元,问甲、乙两种商品应分别购进多少件?
(2)若商店计划投入资金少于5040元,且销售完这批商品后获利多于1312元,请问有哪几种购货方案?并直接写出其中获利最大的购货方案.
【答案】(1)甲种商品购进100件,乙种商品购进80件.(2)有三种购货方案,见解析,其中获利最大的是方案一.
【解析】
(1)等量关系为:甲件数+乙件数=180;甲总利润+乙总利润=1240.
(2)设出所需未知数,甲进价×甲数量+乙进价×乙数量<5040;甲总利润+乙总利润>1312.
解:(1)设甲种商品应购进x件,乙种商品应购进y件.
根据题意得:,解得:.
答:甲种商品购进100件,乙种商品购进80件;
(2)设甲种商品购进a件,则乙种商品购进件.根据题意得:
.
解不等式组,得:.
∵a为非负整数,
∴a取61,62,63
∴相应取119,118,117
方案一:甲种商品购进61件,乙种商品购进119件.
方案二:甲种商品购进62件,乙种商品购进118件.
方案三:甲种商品购进63件,乙种商品购进117件.
答:有三种购货方案,其中获利最大的是方案一.
故答案为:(1)甲种商品购进100件,乙种商品购进80件.(2)有三种购货方案,见解析,其中获利最大的是方案一.
科目:初中数学 来源: 题型:
【题目】某超市举行店庆活动,对甲、乙两种商品实行打折销售,打折前,购买2件甲商品和3件乙商品需要180元;购买1件甲商品和4件乙商品需要200元,而店庆期间,购买10件甲商品和10件乙商品仅需520元,这比打折前少花多少钱?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了迎接“十一”小长假的购物高峰.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表:
运动鞋 | 甲 | 乙 |
进价(元/双) | m | m﹣20 |
售价(元/双) | 240 | 160 |
已知:用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
(1)求m的值;
(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)不少于21700元,且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店准备对甲种运动鞋进行优惠促销活动,决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每次移动1个单位长度,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么点A2 019的坐标为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,人工喷泉有一个竖直的喷水枪AB,喷水口A距地面2m,喷出水流的运动路线是抛物线. 如果水流的最高点P到喷水枪AB所在直线的距离为1m,且到地面的距离为3.6m,求水流的落地点C到水枪底部B的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAD=90°,AB=AD,CB=CD,一个以点C为顶点的45°角绕点C旋转,角的两边与BA,DA交于点M,N,与BA,DA的延长线交于点E,F,连接AC.
(1)在∠FCE旋转的过程中,当∠FCA=∠ECA时,如图1,求证:AE=AF;
(2)在∠FCE旋转的过程中,当∠FCA≠∠ECA时,如图2,如果∠B=30°,CB=2,用等式表示线段AE,AF之间的数量关系,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-1,3),B(-2,1),C(-3,1).
(1)画出△ABC关于y轴对称的△A1B1C1,并写出A1点的坐标及sin∠B1C1A1的值;
(2)以原点O为位似中心,位似比为1:2,在y轴的左侧,画出将△ABC放大后的△A2B2C2,并写出A2点的坐标;
(3)若点D为线段BC的中点,直接写出经过(2)的变化后点D的对应点D2的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.
(1)求证:OE=OF;
(2)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
(3)当点O运动到何处,且△ABC满足什么条件时,四边形AECF是正方形?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】同学们都知道,|5(2)|表示5与2之差的绝对值,实际上也可理解为5与2两数在数轴上所对应的两点之间的距离,试探索:
(1)求|5(2)|=___.
(2)若|x2|=5,则x=___
(3)同理|x+5|+|x2|表示数轴上有理数x所对应的点到5和2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x2|=7,这样的整数是___.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com