精英家教网 > 初中数学 > 题目详情

【题目】完成下面推理过程: 如图,已知∠1=∠2,∠B=∠C,可推得AB∥CD.理由如下:

∵∠1=∠2(已知),
且∠1=∠CGD(),
∴∠2=∠CGD(等量代换).
∴CE∥BF().
∴∠=∠C().
又∵∠B=∠C(已知),
∴∠=∠B(等量代换).
∴AB∥CD().

【答案】对顶角相等;同位角相等,两直线平行;BFD;两直线平行,同位角相等;BFD;内错角相等,两直线平行
【解析】解:答案为:对顶角相等;同位角相等,两直线平行;BFD两直线平行,同位角相等;BFD;内错角相等,两直线平行. 先由对顶的定义得到∠1=∠CGD,则∠2=∠CGD,根据平行线的判定得到CE∥BF,则∠C=∠BFD,易得∠B=∠BFD,然后根据平行线的判定即可得到AB∥CD.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】化简:(a+4)(a-2)-a(a+1)=________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=﹣(x12+3图象的顶点坐标是_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】去年“双11”购物节的快递量暴增,某快递公司要在街道旁设立一个派送还点,向A,B两居民区投送快递,派送点应该设在什么地方,才能使它到A,B的距离之和最短?快递员根据实际情况,以街道为x轴,建立了如图所示的平面直角坐标系,测得坐标A(﹣2,2)、B(6,4),则派送点的坐标是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标中,点Dy轴上,以D为圆心,作⊙Dx轴于点EF,交y轴于点BG,点A上,连接ABx轴于点H,连接 AF并延长到点C,使∠FBC=A

(1)判断直线BC与⊙D的位置关系,并说明理由;

(2)求证:BE2=BH·AB

(3) 若点E坐标为(-4,0),点B的坐标为(0,-2),AB=8,求FA两点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,CE平分∠ACD,AE平分∠BAC,∠EAC+∠ACE=90°
(1)请判断AB与CD的位置关系并说明理由;
(2)如图2,在(1)的结论下,当∠E=90°保持不变,移动直角顶点E,使∠MCE=∠ECD,当直角顶点E点移动时,问∠BAE与∠MCD是否存在确定的数量关系?
(3)如图3,在(1)的结论下,P为线段AC上一定点,点Q为直线CD上一动点,当点Q在射线CD上运动时(点C除外)∠CPQ+∠CQP与∠BAC有何数量关系? (2、3小题只需选一题说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:b是最小的正整数,且a、b满足(c﹣5)2+|a+b|=0,请回答问题:

(1)请直接写出a、b、c的值:a= , b= , c=
(2)a、b、c所对应的点分别为A、B、C,开始在数轴上运动,若点A以每秒2个单位长度的速度向左运动,同时,点B和点C分别以每秒2个单位长度和6个单位长度的速度向右运动,假设t秒钟过后,若点B与点C之间的距离表示为BC,点A与点B之间的距离表示为AB.
请问:BC﹣AB的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算(2x﹣1)(1﹣2x)结果正确的是(
A.4x2﹣1
B.1﹣4x2
C.﹣4x2+4x﹣1
D.4x2﹣4x+1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场有三层,第一层有商品(mn)2种,第二层有商品m(mn)种,第三层有商品n(mn)种,求这个商场共有多少种商品.

查看答案和解析>>

同步练习册答案