精英家教网 > 初中数学 > 题目详情
25、已知:AB是⊙O的直径,AD是⊙O的弦,且∠DAB=60°,过O作弦AD的平行线与过B点的切线交于C点,连接CD,求∠ADC的度数.(请画出此题示意图)
分析:连接OD,由于OA=OD,∠DAB=60°,那么△ABD是等边三角形;再利用OC∥AD,那么有∠COD=60°,∠BOC=60°,OC=OC,OB=OD,可证△COD≌△COB,那么∠CDO=∠CBO=90°,从而易求∠ADC.
解答:解:画出示意图,(1分)
连接OD,(2分)
∵OD=OA,∠DAO=60°,
∴△ADO是等边三角形,∠ADO=60°,(3分)
∵OC∥AD,
∴∠DOC=∠COB=60°;
在△BOC与△DOC中,
∵BO=DO,∠BOC=∠DOC,CO=CO,
∴△BOC≌△DOC,
∴∠CBO=∠CDO,(6分)
∵CB⊥AB,
∴∠CBO=∠CDO=90°,(7分)
∴∠ADC=∠ADO+∠ODC=60°+90°=150°.(8分)
点评:本题利用了等边三角形的判定、平行线的性质、全等三角形的判定和性质、切线的性质等知识.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

曙光中学需制作一副简易篮球架,如图是篮球架的侧面示意图,已知篮板所在直线AD和直杆EC都与BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜杆AB与直杆EC的长分别是多少米?(结果精确到0.01米)
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•钦州)如图,某大楼的顶部树有一块广告牌CD,小李在山坡的坡脚A处测得广告牌底部D的仰角为60°.沿坡面AB向上走到B处测得广告牌顶部C的仰角为45°,已知山坡AB的坡度i=1:
3
,AB=10米,AE=15米.(i=1:
3
是指坡面的铅直高度BH与水平宽度AH的比)
(1)求点B距水平面AE的高度BH;
(2)求广告牌CD的高度.
(测角器的高度忽略不计,结果精确到0.1米.参考数据:
2
1.414,
3
1.732)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标系中,直y=
3
2
x+b
与双曲线y=
16
x
相交于第一象限内的点A,AB、AC分别垂直于x轴、y轴,垂足分别为B、C,已知四边形ABCD是正方形,求直线所对应的一次函数的解析式以及它与x轴的交点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

红星中学篮球课外活动小组的同学自己动手制作一副简易篮球架.如图,是篮球架的侧面示意图,已知篮板所在直线AD和直杆EC都与BC垂直,BC=2.8米,CD=1.8米,∠ABD=40°,求斜杆AB与直杆EC的长分别是多少米?(计算结果精确到0.01米,参考数据:(sin40°≈0.588,cos40°≈0.809,tan40°≈0.727.)

查看答案和解析>>

科目:初中数学 来源: 题型:

已知线段AB=4,点C是平面上一点(不与A,B重合),M、N分别是线段CA,CB的中点.
(1)当C在线段AB上时,如图,求MN的长;
(1)当C在线段AB的延长线上时,画出图形,并求MN长;
(2)当C在直段AB外时,画出图形,量一量,写出MN的长(不写理由)

查看答案和解析>>

同步练习册答案