【题目】如图,长方形ABCD中,AB=4,AD=3,E是边AB上一点(不与A. B重合),F是边BC上一点(不与B. C重合).若△DEF和△BEF是相似三角形,则CF的长度为( ).
A.B.C.或D.或1
【答案】C
【解析】
分①∠DEF=90°时,设AE=x,表示出BE=4-x,然后根据△ADE和△BEF相似,根据相似三角形对应边成比例可得,再根据相似三角形的邻边之比分两种情况列式求出x的值,然后求出BE,再求出BF、CF的值即可得解;②∠DFE=90°时,设CF=x,然后根据△BEF和△CFD相似,根据相似三角形对应边成比例可得,再根据相似三角形的邻边之比分两种情况列式求出x的值,即可得解.
①如图1,∠DEF=90°时,设AE=x,则BE=4x,
易求△ADE∽△BEF,
∴,
即,
∵△DEF和△BEF是相似三角形,
∴△DEF和△ADE是相似三角形,
∴或,
∴或,
整理得,6x=12或 (无解),
解得x=2,
∴BE=42=2,
,
解得BF=,
CF=;
②如图2,∠DFE=90°时,设CF=x,则BF=3x,
易求△BEF∽△CFD,
∴,
即,
∵△DEF和△BEF是相似三角形,
∴△DEF和△DCF是相似三角形,
∴或,
即或,
整理得,8x=12或=0(无解),
解得;
综上所述,CF的值为或.
故答案为:C
科目:初中数学 来源: 题型:
【题目】若抛物线与轴两个交点间的距离为2,称此抛物线为定弦抛物线,已知某定弦抛物线的对称轴为直线,将此抛物线向左平移2个单位,再向下平移3个单位,得到的抛物线过点( )
A. B. C. D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系中,抛物线经过点A(0,4),B(1,0),C(5,0),其对称轴与x轴相交于点M.
(1)求抛物线的解析式和对称轴;
(2)在抛物线的对称轴上是否存在一点P,使△PAB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;
(3)连接AC,在直线AC的下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).
(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是 ;
(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是 ;
(3)△A2B2C2的面积是 平方单位.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在“文化宜昌全民阅读”活动中,某中学社团“精一读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2012年全校有1000名学生,2013年全校学生人数比2012年增加10%,2014年全校学生人数比2013年增加100人.
(1)求2014年全校学生人数;
(2)2013年全校学生人均阅读量比2012年多1本,阅读总量比2012年增加1700本(注:阅读总量=人均阅读量×人数)
①求2012年全校学生人均阅读量;
②2012年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2012年、2014年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2014年全校学生人均阅读量比2012年增加的百分数也是a,那么2014年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】边长为2的正方形OABC在平面直角坐标系中的位置如图所示,点D是边OA的中点,连接CD,点E在第一象限,且DE⊥DC,DE=DC.以直线AB为对称轴的抛物线过C,E两点.点M为直线AB上一动点,点N为抛物线上一动点,当以点M,N,D,E为顶点的四边形是平行四边形时点N的坐标为___________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com