精英家教网 > 初中数学 > 题目详情

【题目】已知:关于x的方程

(1)求证:不论m取何值时,方程总有两个不相等的实数根

(2)若方程的一个根为1,求m的值及方程的另一根

【答案】1)见解析;(2)m=3,另一根为3

【解析】

1)先得出一元二次方程根的判别式,再证明判别式大于0即可

2)把x=1代入方程可求得m的值,再解方程可求得另一根

解:(1)∵a=1b=-m+1),c=2m-3
∴△=b2-4ac=[-m+1]2-4×1×2m-3=m-32+40
∴不论m为何值时,方程总有两个不相等的实数根.

2)把x=1代入方程可得1-m+1+2m-3=0
解得m=3
m=3时,原方程为x2-4x+3=0
解得x1=1x2=3
即方程的另一根为3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知关于x的一元二次方程

1)求证:方程有两个不相等的实数根;

2)若△ABC的两边ABAC的长是方程的两个实数根,第三边BC的长为5。当△ABC是等腰三角形时,求k的值。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,将等腰△ABC绕顶点B逆时针方向旋转α度到△A1B1C1的位置,ABA1C1相交于点D,ACA1C1、BC1分别交于点E. F.

(1)求证:△BCF≌△BA1D.

(2)当∠C=α度时,判定四边形A1BCE的形状并说明理由。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,点O为坐标原点,直线y=x+nx轴、y轴分别交于BC两点,抛物线y=ax2+bx+3(a0)CB两点,交x轴于另一点A,连接AC,且tanCAO=3

(1)求抛物线的解析式;

(2)若点P是射线CB上一点,过点Px轴的垂线,垂足为H,交抛物线于Q,设P点横坐标为t,线段PQ的长为d,求出dt之间的函数关系式,并写出相应的自变量t的取值范围;

(3)(2)的条件下,当点P在线段BC上时,设PH=e,已知de是以y为未知数的一元二次方程:y2(m+3)y+(5m22m+13)=0 (m为常数)的两个实数根,点M在抛物线上,连接MQMHPM,且.MP平分QMH,求出t值及点M的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,梯形ABCD中,AD//BC,对角线ACBD相交于点O ,若,等于()

A. 16B. 13C. 14D. 15

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知是一次函数的图象和反比例函数的图象的两个交点.

1)求反比例函数和一次函数的解析式;

2)求的面积;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】参与两个数学活动,再回答问题:

活动:观察下列两个两位数的积两个乘数的十位上的数都是9,个位上的数的和等于,猜想其中哪个积最大?

活动:观察下列两个三位数的积两个乘数的百位上的数都是9,十位上的数与个位上的数组成的数的和等于,猜想其中哪个积最大?

分别写出在活动中你所猜想的是哪个算式的积最大?

对于活动,请用二次函数的知识证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示ABCD四点在⊙O上的位置,其中=180°,且==.若阿超在上取一点P,在上取一点Q,使得∠APQ=130°,则下列叙述何者正确( )

A. Q点在上,且>B. Q点在上,且<

C. Q点在上,且>D. Q点在上,且<

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知关于的一元二次方程

)对于任意的实数,判断方程的根的情况,并说明理由.

)若方程的一个根为,求出的值及方程的另一个根.

查看答案和解析>>

同步练习册答案