精英家教网 > 初中数学 > 题目详情

【题目】已知点D与点A(0,6)、B(0,﹣4)、Cxy)是平行四边形的四个顶点,其中xy3x﹣4y+12=0,则CD的最小值为_____

【答案】

【解析】

如图所示,根据平行四边形的性质可知:对角线AB、CD互相平分,可得CD过线段AB的中点M,即CM=DM,根据AB坐标求出M坐标,要求CD的最小值只需求出CM的最小值即可.

根据平行四边形的性质可知:对角线AB、CD互相平分,

CD过线段AB的中点M,即CM=DM,

A(0,6),B(0,-4),

M(0,1),

∵点到直线的距离垂线段最短,

∴过M作直线CF的垂线交直线CF于点C,此时CM最小,

直线3x-4y+12=0,令x=0得到y=3;令y=0得到x=-4,即F(-4,0),E(0,3),

OE=3,OF=4,EM=2,EF==5,

∵△EOF∽△ECM,

,即

解得:CM=

CD的最小值为

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,且经过弦CD的中点H,已知sinCDB=,BD=5,则AH的长为(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PHPC

其中正确的是(   )

A. ①②③④ B. ②③ C. ①②④ D. ①③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC是边长为3的等边三角形,将△ABC沿直线BC向右平移,使点B与点C重合,得到△ECD,连接BE,交ACF

1)猜想ACBE的位置关系,并证明你的结论;

2)求线段BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】正方形ABCD和正方形AEFG的边长分别为2B在边AGD在线段EA的延长线上连接BE

(1)如图1,求证DGBE

(2)如图2,将正方形ABCD绕点A按逆时针方向旋转当点B恰好落在线段DG上时求线段BE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】1是边长分别为43的两个等边三角形纸片ABCCDE叠放在一起(CC重合).

(1)操作:固定ABC,将CDE绕点C顺时针旋转30°得到CDE,连接ADBECE的延长线交ABF(图2);

探究:在图2中,线段BEAD之间有怎样的大小关系?试证明你的结论.

(2)操作:将图2中的CDE,在线段CF上沿着CF方向以每秒1个单位的速度平移,平移后的CDE设为PQR(图3);

请问:经过多少时间,PQRABC重叠部分的面积恰好等于

(3)操作:图1CDE固定,将ABC移动,使顶点C落在CE的中点,边BCDE于点M,边ACDC于点N,设∠AC C′=α(30°<α<90,图4);

探究:在图4中,线段CNEM的值是否随α的变化而变化?如果没有变化,请你求出CNEM的值,如果有变化,请你说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,∠C=90°,以AB上一点O为圆心,OA为半径的圆与BC相切于点D,分别交AB,AC于点E,F.

(1)如图①,连接AD,若∠CAD=25°,求∠B的大小;

(2)如图②,若点F为弧AD的中点,⊙O的半径为2,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在圆O中,直径CD⊥弦AB于点E,点P是CD延长线上一点,连接PB、BD.

(1)若BD平分∠ABP,求证:PB是圆O的切线;

(2)若PB是圆O的切线,AB=4,OP=4,求OE的长;

(3)如图2,连接AP,延长BD交AP于点F,若BD⊥AP,AB=2,OP=4,求tan∠BDE的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).

(1)求△AHO的周长;

(2)求该反比例函数和一次函数的解析式.

【答案】(1)△AHO的周长为12(2) 反比例函数的解析式为y=一次函数的解析式为y=-x+1.

【解析】试题分析: 1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;

2)根据待定系数法,可得函数解析式.

试题解析:(1)由OH=3tan∠AOH=,得

AH=4.即A-43).

由勾股定理,得

AO==5

△AHO的周长=AO+AH+OH=3+4+5=12

2)将A点坐标代入y=k≠0),得

k=-4×3=-12

反比例函数的解析式为y=

y=-2时,-2=,解得x=6,即B6-2).

AB点坐标代入y=ax+b,得

解得

一次函数的解析式为y=-x+1

考点:反比例函数与一次函数的交点问题.

型】解答
束】
21

【题目】如图,AB为⊙O的直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,过点C作CE⊥DB交DB的延长线于点E,直线AB与CE相交于点F.

(1)求证:CF为⊙O的切线;

(2)填空:当∠CAB的度数为________时,四边形ACFD是菱形.

查看答案和解析>>

同步练习册答案