精英家教网 > 初中数学 > 题目详情
如图,已知一次函数y1=kx+b图象与x轴相交于点A,与反比例函数的图象相交于B(-1,5)、C(,d)两点.点P(m,n)是一次函数y1=kx+b的图象上的动点.
(1)求k、b的值;
(2)设-1<m<,过点P作x轴的平行线与函数的图象相交于点D.试问△PAD的面积是否存在最大值?若存在,请求出面积的最大值及此时点P的坐标;若不存在,请说明理由;
(3)设m=1-a,如果在两个实数m与n之间(不包括m和n)有且只有一个整数,求实数a的取值范围.

【答案】分析:(1)B、C两点在反比例函数图象上,根据反比例函数图象上点的横纵坐标的积相等,可求d的值,将B、C两点坐标代入y1=kx+b中,列方程组可求k、b的值;
(2)存在,根据直线解析式可求A点坐标,点P在直线上,点P(,n),PD∥x轴,则D、P的纵坐标都是n,此时,D(-,n),则PD=+,由S=•n•PD,可求△PAD的面积表达式,利用二次函数的性质求最大值;
(3)点P(m,n)在一次函数图象上,由一次函数解析式可知,设m=1-a,则P(1-a,2a+1),依题意m≠n,可知a≠0,根据a>0和a<0两种情况,分别求实数a的取值范围.
解答:解:(1)将B点的坐标代入y2=,得c=-5,
则y2=-
把x=代入得y=-2,
则C(,-2)
将B、C代入直线y1=kx+b得:

(2)存在.
令y1=0,x=,则A的坐标是:(,0);
由题意,点P在线段AB上运动(不含A,B),
设点P(,n),
∵DP平行于x轴,
∴D、P的纵坐标都是n,
∴D的坐标是:(-,n),
∴S=•n•PD=+)×n=-(n-2+
而-2m+3=n,得0<n<5;
所以由S关于n的函数解析式,所对应的抛物线开口方向决定,当n=,即P(),S的最大值是:

(3)由已知P(1-a,2a+1),易知,m≠n,1-a≠2a+1,a≠0;
若a>0,m<1<n,由题设m≥0,n≤2,

解不等式组的解集是:0<a≤
若a<0,n<1<m,由题设n≥0,m≤2,

解得:-≤a<0;
综上:a的取值范围是:-≤a<0,0<a≤
点评:本题考查了反比例函数的综合运用.关键是根据反比例函数图象上点的横纵坐标积相等求C点坐标,由“两点法”求直线解析式,根据平行于x轴直线上点的坐标特点,表示三角形的面积,根据二次函数的性质求最大值,本题还考查了分类讨论的思想.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,已知一次函数y1=kx+b的图象与反比例函数y2=
ax
的图象交于A(2,4)和精英家教网B(-4,m)两点.
(1)求这两个函数的解析式;
(2)求△AOB的面积;
(3)根据图象直接写出,当y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=kx+b的图象与反比例函数y=-
8x
的图象交于A,B点,且点A的横坐标和点B的纵坐标都是-2.求:
(1)求A、B两点坐标;
(2)求一次函数的解析式;
(3)根据图象直接写出使一次函数的值小于反比例函数的值的x的取值范围.
(4)求△AOB的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•新疆)如图,已知一次函数y1=kx+b与反比例函数y2=
mx
的图象交于A(2,4)、B(-4,n)两点.
(1)分别求出y1和y2的解析式;
(2)写出y1=y2时,x的值;
(3)写出y1>y2时,x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=k1x+b经过A、B两点,将点A向上平移1个单位后刚好在反比例函数y=
k2x
上.
(1)求出一次函数解析式.
(2)求出反比例函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y=kx+b的图象交反比例函数y=
4-2m
x
的图象交于点A、B,交x轴于点C.
(1)求m的取值范围;
(2)若点A的坐标是(2,-4),且
BC
AB
=
1
3
,求m的值和一次函数的解析式;
(3)根据图象,写出当反比例函数的值小于一次函数的值时x 的取值范围?

查看答案和解析>>

同步练习册答案