精英家教网 > 初中数学 > 题目详情

【题目】如图,已知AD是△ABC的高,∠BAC=60°,BD=2CD=2,试求AB的长.

【答案】

【解析】

过点B作BE⊥AC于E,设AE=x,则BE=x,AB=2x,CE=,再根据勾股定理可知:AB2-BD2=AD2=AC2-CD2,将各值代入,即可求出x的值,进而求出AB的长.

解:过点B作BE⊥AC于E,则BE=AE,设AE=x,则BE=x,AB=2x,

∵BD=2CD=2,

∴BD=2,CD=1,BC=3.

∴CE==,

由AB2﹣BD2=AD2=AC2﹣CD2,得4x2-4=(x+)2-1,

∴4x2-4=8-2x2+2x,3x2-6=x,9x4-36x2+36=9x2-3x4,

4x4﹣15x2+12=0,

∴x2=,又

∴x=不合题意,

故x=,∴AB==

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,AC⊥BC,AC=BC=4,以BC为直径作半圆,圆心为O.以点C为圆心,BC为半径作弧AB,过点O作AC的平行线交两弧于点D、E,则阴影部分的面积是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场举行开业酬宾活动,设立了两个可以自由转动的转盘(如图所示,两个转盘均被等分),并规定:顾客购买满188元的商品,即可任选一个转盘转动一次,转盘停止后,指针所指区域内容即为优惠方式;若指针所指区域空白,则无优惠.已知小张在该商场消费300元

(1)若他选择转动转盘1,则他能得到优惠的概率为多少?
(2)选择转动转盘1和转盘2,哪种方式对于小张更合算,请通过计算加以说明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在数轴上有ABC这三个点.

回答:

1ABC这三个点表示的数各是多少?

2AB两点间的距离是多少?AC两点间的距离是多少?

3)若将点A向右移动5个单位后,则ABC这三个点所表示的数谁最大?

4)应怎样移动点B的位置,使点B到点A和点C的距离相等?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y= x+4交于x轴于点A,交y轴于点C,过A、C两点的抛物线F1交x轴于另一点B(1,0).

(1)求抛物线F1所表示的二次函数的表达式及顶点Q的坐标;
(2)在抛物线上是否存在点P,使△BPC的内心在y轴上,若存在,求出点P的坐标,若不存在写出理由;
(3)直线y=kx﹣6与y轴交于点N,与直线AC的交点为M,当△MNC与△AOC相似时,求点M坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,边长为4,E为AD延长线上一点,DE=x(0<x<4),在AE上取一点M,连接CM,将△CME沿CM对折,若点E恰落在线段AB上的点F处,则AM=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某厂生产一种工具,据市场调查,若按每个工具280元销售时,每月可销售300个,若销售单价每降低1元,每月可多售出2个,据统计,每个工具的固定成本Q(元)与月销售y(个)满足如下关系:

月销量y(个)

100

160

240

320

每个工具的固定成本Q(元)

96

60

40

30


(1)写出月产销量y(个)与销售单价x(元)之间的函数关系式;
(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
(3)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一架梯子AC长2.5米,斜靠在一面墙上,梯子底端离墙0.7米.

(1)这个梯子的顶端距地面有多高?

(2)如果梯子的顶端下滑了0.4米到A′,那么梯子的底端在水平方向滑动了几米?

查看答案和解析>>

同步练习册答案