如图,正方形AEFG的顶点E、G在正方形ABCD的边AB、AD上,连接BF、DF.
(1)求证:BF=DF;
(2)连接CF,请直接写出BE∶CF的值(不必写出计算过程).
![]()
(1)证明见解析;(2)
.
【解析】
试题分析:(1)由正方形的性质可证△DGF≌△BEF,即证DF=BF.(2)(2)如图,可设AB=3,AE=2,则BE=1;延长GF交BC于点H,延长EF交CD于点G,则四边形FGCH为正方形,CF为这个正方形的对角线,FH为这个正方形的边,所以CF:FH=
;又因为FH=BE,所以BE∶CF=
.
![]()
试题解析:证明:(1)∵四边形ABCD和AEFG都是正方形,
∴AB=AD,AE=AG=EF=FG,∠BEF=∠DGF=90°, 1分
∵BE=AB-AE,DG=AD-AG,∴BE= DG, 2分
∴△BEF≌△DGF.
∴BF=DF. 4分
(2)BE∶CF=
. 6分
考点:直角三角形全等的判定和性质;正方形的性质.
科目:初中数学 来源:2014年初中毕业升学考试(山东滨州卷)数学(解析版) 题型:解答题
如图,已知正方形ABCD,把边DC绕D点顺时针旋转30°到DC′处,连接AC′,BC′,CC′,写出图中所有的等腰三角形,并写出推理过程.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(山东滨州卷)数学(解析版) 题型:选择题
下列四组线段中,可以构成直角三角形的是( )
A.4,5,6 B.1.5,2,2.5 C.2,3,4 D.1,
, 3
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(山东济宁卷)数学(解析版) 题型:解答题
如图,抛物线
与x轴交于A(5,0)、B(-1,0)两点,过点A作直线AC⊥x轴,交直线
于点C;
(1)求该抛物线的解析式;
(2)求点A关于直线
的对称点
的坐标,判定点
是否在抛物线上,并说明理由;
(3)点P是抛物线上一动点,过点P作y轴的平行线,交线段
于点M,是否存在这样的点P,使四边形PACM是平行四边形?若存在,求出点P的坐标;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(山东济宁卷)数学(解析版) 题型:选择题
如果圆锥的母线长为5cm,底面半径为2cm,那么这个圆锥的侧面积是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(安徽卷)数学(解析版) 题型:填空题
据报载,2014年我国将发展固定宽带接入新用户25000000户,其中25000000用科学记数法表示
为 .
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(四川达州卷)数学(解析版) 题型:解答题
四张背面完全相同的纸牌(如图,用①、②、③、④表示),正面分别写有四个不同的条件.小明将这4张纸牌背面朝上洗匀后,先随机抽出一张(不放回),再随机抽出一张.
![]()
(1)写出两次摸牌出现的所有可能的结果(用①、②、③、④表示);
(2)以两次摸出的牌面上的结果为条件,求能判断四边形ABCD为平行四边形的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com