精英家教网 > 初中数学 > 题目详情

【题目】如图,半径为3的扇形AOB,∠AOB=120°,以AB为边作矩形ABCD交弧AB于点EF,且点EF为弧AB的四等分点,矩形ABCD与弧AB形成如图所示的三个阴影区域,其面积分别为,则为( )(

A. B. C. D.

【答案】A

【解析】

作辅助线,计算OG和矩形的长AB,宽GH的长,根据S1+S3-S2=SAOB+S矩形ABCD-S扇形OAF-SEOF-S扇形OBE-S扇形OEF-SEOF),代入计算即可.

解:连接OEOF,过OOH⊥EFH,交ABG

EF为弧AB的四等分点,∠AOB=120°

∴∠AOF=∠BOE=30°∠EOF=60°

∵OA=OB

∴∠BOG=60°

∵OB=3

∴OG=BG=

∴AB=2BG=3

Rt△EOH中,∠EOH=30°OE=3

∴EH=

∴OH=

∴GH=-

∴S1+S3-S2=SAOB+S矩形ABCD-S扇形OAF-SEOF-S扇形OBE-S扇形OEF-SEOF),

=+-

=

=

故选:A

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在△ABC中,ABAC,∠ABC=70°

(1)用直尺和圆规作∠ABC的平分线BDAC于点D(保留作图痕迹,不要求写作法)

(2)在(1)的条件下,∠BDC   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.

1)证明:FD=AB;(2)当平行四边形ABCD的面积为8时,求△FED的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知直线与抛物线相交于AB两点,且点A1,-4)为抛物线的顶点,点Bx轴上。

1)求抛物线的解析式;

2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;

3)若点Qy轴上一点,且△ABQ为直角三角形,求点Q的坐标。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=ACADBC于点DBC=10cmAD=8cmEF点分别为ABAC的中点.

1)求证:四边形AEDF是菱形;

2)求菱形AEDF的面积;

3)若HF点出发,在线段FE上以每秒2cm的速度向E点运动,点PB点出发,在线段BC上以每秒3cm的速度向C点运动,问当t为何值时,四边形BPHE是平行四边形?当t取何值时,四边形PCFH是平行四边形?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,以点AB为直径的⊙O分别与ACBC交于点ED,且BD=CD

1)求证:∠B=∠C

2)过点DDFOD,过点FFHAB.若AB=5CD=,求AH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,一个扇形纸片的圆心角为90°,半径为6.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为(  )

A. B. 9C. 12πD.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在Rt△ABC中,∠ABC=90°,AB=6,BC=8,点E是△ABC的内心,过点E作EF∥AB交AC于点F,则EF的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.某商场为缓解停车难问题,拟建造地下停车库,如图是该地下停车库坡道入口的设计示意图,其中,ABBD,BAD=18°,CBD,BC=0.5 m.根据规定,地下停车库坡道入口上方要张贴限高标志,以便告知驾驶员所驾车辆能否安全驶入.小明认为CD的长就是所限制的高度,而小亮认为应该以CE的长作为限制的高度.小明和小亮谁说得对?请你判断并计算出正确的结果.(结果精确到0.1 m,参考数据:sin 18°≈0.31,cos 18°≈0.95,tan 18°≈0.325)

查看答案和解析>>

同步练习册答案