【题目】模型建立:
(1)如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.
求证:△BEC≌△CDA.
模型应用:
(2)已知直线l1:y=x+4与y轴交与A点,将直线l1绕着A点顺时针旋转45°至l2,如图2,求l2的函数解析式.
(3)如图3,矩形ABCO,O为坐标原点,B的坐标为(8,6),A、C分别在坐标轴上,P是线段BC上动点,设PC=m,已知点D在第一象限,且是直线y=2x-6上的一点,若△APD是不以A为直角顶点的等腰Rt△,请直接写出点D的坐标.
【答案】(1)证明见解析;(2)y=x+4;(3)(4,2),(,),(,).
【解析】
(1)先根据△ABC为等腰直角三角形得出CB=CA,再由AAS定理可知△ACD≌△CBE;
(2)过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,根据∠BAC=45°可知△ABC为等腰Rt△,由(1)可知△CBD≌△BAO,由全等三角形的性质得出C点坐标,利用待定系数法求出直线l2的函数解析式即可;
(3)当点D为直角顶点,分点D在矩形AOCB的内部与外部两种情况;点P为直角顶点,显然此时点D位于矩形AOCB的外部,由此可得出结论.
(1)∵△ABC为等腰直角三角形,
∴CB=CA,
又∵AD⊥CD,BE⊥EC,
∴∠D=∠E=90°,∠ACD+∠BCE=180°-90°=90°,
又∵∠EBC+∠BCE=90°,
∴∠ACD=∠EBC,
在△ACD与△CBE中,
,
∴△ACD≌△EBC(AAS);
(2)过点B作BC⊥AB于点B,交l2于点C,过C作CD⊥x轴于D,
如图1,
∵∠BAC=45°,
∴△ABC为等腰Rt△,
由(1)可知:△CBD≌△BAO,
∴BD=AO,CD=OB,
∵直线l1:y=x+4,
∴A(0,4),B(-3,0),
∴BD=AO=4.CD=OB=3,
∴OD=4+3=7,
∴C(-7,3),
设l2的解析式为y=kx+b(k≠0),
∴,
∴,
∴l2的解析式:y=x+4;
(3)当点D位于直线y=2x-6上时,分两种情况:
①点D为直角顶点,分两种情况:
当点D在矩形AOCB的内部时,过D作x轴的平行线EF,交直线OA于E,交直线BC于F,设D(x,2x-6);
则OE=2x-6,AE=6-(2x-6)=12-2x,DF=EF-DE=8-x;
则△ADE≌△DPF,得DF=AE,即:
12-2x=8-x,x=4;
∴D(4,2);
当点D在矩形AOCB的外部时,设D(x,2x-6);
则OE=2x-6,AE=OE-OA=2x-6-6=2x-12,DF=EF-DE=8-x;
同1可知:△ADE≌△DPF,
∴AE=DF,即:2x-12=8-x,x=;
∴D(,);
②点P为直角顶点,显然此时点D位于矩形AOCB的外部;
设点D(x,2x-6),则CF=2x-6,BF=2x-6-6=2x-12;
同(1)可得,△APB≌△PDF,
∴AB=PF=8,PB=DF=x-8;
∴BF=PF-PB=8-(x-8)=16-x;
联立两个表示BF的式子可得:
2x-12=16-x,即x=;
∴D(,);
综合上面六种情况可得:存在符合条件的等腰直角三角形;
且D点的坐标为:(4,2),(,),(,).
科目:初中数学 来源: 题型:
【题目】在一次课外实践活动中,同学们要测量某公园人工湖两侧A,B两个凉亭之间的距离.现测得AC=50m,BC=100m,∠CAB=120°,请计算A,B两个凉亭之间的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,将三角板ABC与三角板ADE摆放在一起;如图2,固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,记旋转角∠CAE=α(0°<α<180°).当△ADE的一边与△ABC的某一边平行(不共线)时,写出旋转角α的所有可能的度数为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于一个三位正整数t,将各数位上的数字重新排序后(包括本身),得到一个新的三位数 (a≤c),在所有重新排列的三位数中,当|a+c﹣2b|最小时,称此时的 为t的“最优组合”,并规定F(t)=|a﹣b|﹣|b﹣c|,例如:124重新排序后为:142、214、因为|1+4﹣4|=1,|1+2﹣8|=5,|2+4﹣2|=4,所以124为124的“最优组合”,此时F(124)=﹣1.
(1)三位正整数t中,有一个数位上的数字是另外两数位上的数字的平均数,求证:F(t)=0;
(2)一个正整数,由N个数字组成,若从左向右它的第一位数能被1整除,它的前两位数能被2整除,前三位数能被3整除,…,一直到前N位数能被N整除,我们称这样的数为“善雅数”.例如:123的第一位数1能披1整除,它的前两位数12能被2整除,前三位数123能被3整除,则123是一个“善雅数”.若三位“善雅数”m=200+10x+y(0≤x≤9,0≤y≤9,x、y为整数),m的各位数字之和为一个完全平方数,求出所有符合条件的“善雅数”中F(m)的最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场购进一批LED灯泡与普通白炽灯炮,其进价与标价如下表,该商场购进LED灯泡与普通白炽灯炮共300个,LED灯泡按标价进行销售,而普通白炽灯炮按标价打九折销售,销售完这批灯泡后可以获利3200元。
(1)求该商场购进LED灯泡与普通白炽灯泡的数量分别为多少个?
(2)由于春节期间热销,很快将两种灯泡销售完,若该商场计划再次购进两种灯泡120个,并在不打折的情况下销售完,若销售完这批灯泡的获利不超过总进货价的28%,则最多购进LED灯泡多少个?
LED灯泡 | 普通白炽灯泡 | |
进价(元) | 45 | 25 |
标价(元) | 60 | 30 |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC是等边三角形,点A(-3,0),点B(3,0),点D是y轴上的一个动点,连接BD,将线段BD绕点B逆时针旋转60°,得到线段BE,连接DE,得到△BDE,则OE的最小值为______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知点A、B分别在x轴和y轴上,OA=OB,点C为AB的中点,AB=
(1) 如图1,求的面积.
(2) 如图2,E、F分别为上的动点,且∠ECF=45°,求证:
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某公司组织员工出去旅游,公司联系旅游公司提供车辆,该公司现有50座与35座两种车辆,如果用35座的车,会有5人没座;如果全部换乘50座的车,则可少用2辆车,而且多出15个座位.
若该公司只能单独租其中一种车,则分别需要多少辆?
若35座车的日租金为250元辆,50座的日租金为320元辆,有哪种方案能使座位刚好且费用最少?用这种方案公司要出多少资金.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一天,王亮同学从家里跑步到体育馆,在那里锻炼了一阵后又走到某书店去买书, 然后散步走回家如图反映的是在这一过程中,王亮同学离家的距离 s(千米)与离家的时间 t(分钟)之间的关系,请根据图象解答下列问题:
(1)体育馆离家的距离为 千米,书店离家的距离为_____千米;王亮同学在书店待了______分钟.
(2)分别求王亮同学从体育馆走到书店的平均速度和从书店出来散步回家的平均速度.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com